ebook img

Respiration in ocean margin sediments Johan Henrik Andersson PDF

179 Pages·2014·3.67 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Respiration in ocean margin sediments Johan Henrik Andersson

GEOLOGICA ULTRAIECTINA Mededelingen van de Faculteit Geowetenschappen Universiteit Utrecht No. 283 Respiration in ocean margin sediments Johan Henrik Andersson ISBN: 978-90-5744-148-6 NIOO Thesis 61 Respiration in ocean margin sedim ents Sedim entrespiratie in de overgang van het continentale plat naar de diepe oceaan (met en samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. J.C. Stoof, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op maandag 12 november 2007 des middags te 2 uur door Johan Henrik Andersson geboren op 15 december 1977 te Sölvesborg, Zweden Promotoren: Prof. dr. C. H. R. Heip Prof. dr. J. J. Middelburg Co-promotor: Dr. K. Soetaert This thesis was supported by the Netherlands Organisation for Scientific Research and the European Union (ORFOIS; EVK2-CT-2001-00100). Contents 1 General introduction 1 1.1 Oxygen in the marine environment......................................... 1 1.2 Quantification of organic matter cycling in marine sediments 3 1.3 Experimental design and model identifiability....................... 8 1.4 Outline of this thesis.................................................................... 10 2 Respiration patterns in the deep ocean 13 2.1 Introduction..................................................................................... 14 2.2 M ethods............................................................................................ 15 2.2.1 Flux parameterizations................................................... 15 2.2.2 D ata..................................................................................... 16 2.3 Results and discussion................................................................. 16 2.3.1 Remineralization profile ................................................ 16 2.3.2 Global ocean respiration budget.................................. 20 2.4 Conclusions..................................................................................... 23 3 Short-term fate of phytodetritus in the Arabian Sea OMZ 25 3.1 Introduction..................................................................................... 26 3.2 Material and methods ................................................................. 27 3.2.1 Study s ite ........................................................................... 27 3.2.2 Experimental conditions................................................ 28 3.2.3 Analytical methods.......................................................... 30 3.2.4 Data treatm ent................................................................. 31 3.3 Results............................................................................................... 32 3.4 Discussion......................................................................................... 41 3.4.1 Experimental approach................................................... 41 3.4.2 Fate of phytodetritus....................................................... 45 3.4.3 Factors governing respiration ...................................... 46 V Contents 4 Respiration of organic carbon in the Gulf of Finland 49 4.1 Introduction..................................................................................... 50 4.2 Materials and m ethods................................................................. 51 4.2.1 Study area........................................................................... 51 4.2.2 Sampling and analysis.................................................... 54 4.2.3 Benthic fluxes and carbonate dissolution.................. 55 4.3 Results............................................................................................... 56 4.3.1 Sediment profiles of organic carbon............................ 56 4.3.2 Pore-water profiles.......................................................... 56 4.3.3 Benthic respiration rates................................................ 58 4.3.4 Model description and results...................................... 66 4.4 Discussion........................................................................................ 71 4.4.1 Variations in overlying water masses ......................... 71 4.4.2 Respiration rates in the Gulf of Finland .................. 71 4.4.3 Carbonate dissolution .................................................... 72 4.4.4 Resuspension.................................................................... 75 4.5 Conclusions..................................................................................... 77 5 Identifiability and uncertainty of bio-irrigation rates 79 5.1 Introduction..................................................................................... 80 5.2 M ethods........................................................................................... 83 5.2.1 Bio-irrigation model ....................................................... 83 5.2.2 Sensitivity and identifiability.......................................... 85 5.2.3 Bayesian inference .......................................................... 87 5.2.4 Implementation................................................................. 89 5.3 Results and discussion................................................................ 91 5.3.1 Sensitivity functions ....................................................... 91 5.3.2 Sensitivity ranking........................................................... 97 5.3.3 Identifiability.................................................................... 99 5.3.4 Application to measured d a ta ..........................................101 5.3.5 Experimental considerations..............................................103 5.4 Conclusions.........................................................................................109 6 Evaluation of a life time based optode to measure oxygen 111 6.1 Introduction........................................................................................112 6.2 Materials and procedures..................................................................114 6.2.1 Measurement principle........................................................114 vi Contents 6.2.2 Calibration performance....................................................116 6.2.3 Sensitivities...........................................................................118 6.2.4 Long-term stability..............................................................120 6.2.5 Sensitivity to biofouling ....................................................120 6.2.6 Other field applications.......................................................121 6.3 Assessment .........................................................................................122 6.4 Calibration performance..................................................................122 6.4.1 Cross sensitivity and pressure hysteresis .....................122 6.4.2 Long-term stability..............................................................125 6.4.3 Sensitivity to biofouling ....................................................125 6.4.4 Other field applications.......................................................128 6.5 Discussion, comments and recommendations............................130 Summary 135 Samenvatting 139 Acknowledgments 143 Curriculum Vitae 145 Bibliography 147 Contents 1 General introduction Despite the fact that marine sediments might look very dull and uninspiring, at a first glance no more than lifeless cold brownish mud, this impression is far from the truth. Marine sediment flourish with life, ranging from bacteria performing a multitude of chemical reactions to a suite of benthic animals such as mussels, worms and sea urchins. Moreover, marine sediment are intimately linked to the presence of oxygen in the atmosphere, provide the key to the past climate and represent a removal site of bioavailable nitrogen and phosphorus. 1.1 Oxygen in the marine environment Oxygen1 has been a favored electron acceptor ever since it first appeared in the atmosphere in the beginning of the early Proterozoic era, 2.4 Gyr ago as a byproduct of oxygenic photosynthesis (Catling and Claire, 2005). However, photosynthetic production of oxygen is not enough to produce an oxic atmosphere, since it will be consumed rapidly by respiration of organic matter (OM) and oxidation of reduced substances, unless the OM and reduced substances are out of contact with oxygen. Present estimates of the global net primary production and heterotrophic respiration are 8.4 Pmol O2 yr_1 and 8.39 Pmol O2 yr_1, respectively (Lenton, 2003). The slight difference (0.1 %) between these two numbers is the key to the presence of oxygen in the atmosphere, due to the process of burial of organic carbon and pyrite in continental margin sediments (Berner and Raiswell, 1983; Middelburg and Meysman, 2007). With such a powerful electron donor as oxygen available, life was able to evolve from unicellular to multicellular organisms, i.e. metazoans (Knoll and Carroll, 1999). This occurred around 0.6 Gyr ago, after oxygen had 1 Oxygen in this chapter actually refers to either 02(g) or Û2(aq) 1 1 General introduction Table 1.1: Respiration pathways in ocean margin sediments Pathway Chemical reaction Aerobic respiration CH2O + O2 ^ CO2 + H2O Dénitrification 5CH2O + 4NOy —>■ 4HCOy + 2N2 + CO2 + 3H2O Manganese reduction CH2O + 2M11O2 + H2O —> HCOy + 2Mn2+ + 30H~ Iron reduction CH2O + 4Fe(OH)3 —> HCOy + 4Fe2+ + 70H~ + 3H2O Sulfate reduction 2CH2O + SO2- —> 2HCOy + FpS increased even further, near the end of the Proterozoic era (Canfield and Teske, 1996). Along with the evolution of metazoans with muscular, uni­ directional guts came also faecal pellets, which transported OM through the water column at a much faster rate than previously (Logan et ah, 1995). Thus, the biological pump became operational, the sea floor was oxygenated and oxygen levels in the surface ocean increased even further, allowing metazoans to diversify even more (Meysman et ah, 2006). Despite this dramatic oxygenation, anoxic environments are still present today in some oceans basins and in sediments. This excludes metazoans from living deep down in the sediment. Various animals, such as poly­ chaete worms, bury themselves beneath the sediment surface, but have to maintain contact with the overlying water to get oxygen. By pumping wa­ ter, they ventilate their burrows and can in this way breathe and sustain themselves. Ventilation also causes a modification of the redox potential in the immediate surroundings of the burrow, by oxygenating layers of sed­ iment where oxygen would never reach if transport were solely occurring by molecular diffusion. Deeper down in the sediment than the burrows reach, is the exclusive domain of unicellular organisms relying on ancient pathways of respiration, such as denitrification, manganese reduction, iron reduction and sulfate reduction (Table 1.1). In some places in the ocean, where vertical mixing is limited, e.g. due to stratification, and where oxygen consumption is high, due to high in­ put of OM, poor oxygen conditions develop in the bottom water and drastically modify the benthic community. In areas where the overlying water is permanently close to anoxia, but still some oxygen remaining, such as the Oxygen Minimum Zones of the Pacific Ocean and the Arabian Sea, adaptations to these conditions have arisen. These adaptations to low oxygen concentrations are quite diverse and include thin flat bodies, 2

Description:
review del Giorgio and Duarte (2002) reported global respiration rates in the mesopelagic zone of 21 to 28 The estimate of del Giorgio and Duarte (2002) includes subducted. DOC-fluxes as well, but C. Whitcraft, R.M. Jeffreys, M. Schwartz, Oxygen as a control on sea floor biological communities
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.