ebook img

Resource Allocation using Adaptive Characterization of Online, Data-Intensive Workloads PDF

218 Pages·2017·7.68 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Resource Allocation using Adaptive Characterization of Online, Data-Intensive Workloads

Resource Allocation using Adaptive Characterization of Online, Data-Intensive Workloads Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jaimie Kelley, B.S., M.S. Graduate Program in Computer Science and Engineering The Ohio State University 2017 Dissertation Committee: Dr. ChristopherStewart,Advisor Dr. SrinivasanParthasarathy Dr. P.Sadayappan c Copyrightby JaimieKelley 2017 Abstract Cloud resource providers balance maximizing utilization under a power cap with meet- ing workload Service Level Agreements (SLA). As the amount of data used by workloads increases, so do the pressures on compute capacity in the cloud. Even if the resources assigned meet an interactive workload’s need for low latency, the data that interactive workload processes with allocated resources may not be sufficient to achieve a standard of answer quality. Increasing the resources allocated to a specific workload to meet its an- swer quality standard reduces the overall profit a cloud provider can make on interactive workloads. However, if a workload’s answer quality standard is not met, the interactive workload may seek another placement. Cloud instances can be purchased by the minute, and multiple opportunities for placement exist. Because of this, cloud providers need to puttheirclients’interests firstorloserevenue. To best serve their own and their clients interest, cloud providers need data which reflects resource usage, answer quality, and service level. If a cloud provider knows the amount of power used by each workload scheduled, it can better fulfill its power cap requirements withoutpenalty. Ifacloudproviderknowsthecurrentlatencyandanswerqualityofsched- uled workloads, it can decide when to reallocate resources. However, this is difficult be- cause any collection of data online imposes overheads. While cloud providers generally ii reservesomepercentage(5%)ofutilizationforoperatingsystemfunctions,datacollection andanalysismustbedone carefullytoavoidundueimpactonscheduled workloads. Iuseadaptivesolutionstotradeaccuracyforoverheadinworkloadcharacterization. Adap- tiveworkloadcharacterizationsinformresourcemanagementwithoutthehighoverheadof completecalculation, butarenotcompletelyaccurate. In my work, I adaptively reduce the time spent profiling peak power to the degree of accu- racythatacloudprovideriswillingtoaccept. Idevelopedamodelforadaptivelyprofiling peakpowerusagetodeterminecorescaling. Adaptiveprofilingsavedupto93%collection timewhilereducingaccuracyby3%onaverage. To obtain answer quality for online resource management, I overlap execution of online requests with the execution of requests that use all relevant data by using memoization of complete responses from specific components. I built Ubora to obtain and allow manage- ment of answer quality for interactive, data-intensive workloads. Cloud providers set the rateatwhichqueriesare sampled,whichexchangesoverheadfor accuracy. Finally, I designed Quikolo, a service that speculatively deploys and characterizes a target workload in-situ in a colocation placement. Clients use this characterization to decide whether to migrate their workload to this available placement. Quikolo also enables study ofoverheadandaccuracyinfluencedbythenumberoffeaturesandcollectiontimeusedfor workloadcharacterization. iii Adaptivelytradingaccuracyreducestheimpactofworkloadcharacterizationonoverhead. My adaptive characterization solutions enable cloud providers to provision for lower over- head and still achieve information that aids balancing client needs with available cloud resources. iv Vita 2001-2005 ..................................Lutheran High School West - Rocky River,OH 2005-2009 ..................................Bachelor of Science, Computer Science andEnglish(Writing), HeidelbergUniversity 2010-2015 ..................................Masters of Science, Computer Science andEngineering, TheOhioStateUniversity 2010-present ................................PhD student in Computer Science and Engineering, TheOhioStateUniversity Publications Jaimie Kelley, Christopher Stewart, Nathaniel Morris, Devesh Tiwari, Yuxiong He, and Sameh Elnikety, ”Obtaining and Managing Answer Quality for Online Data-Intensive Services”. Journal ACM Transactions on Modeling and Performance Evaluation of Com- putingSystems,2017. JaimieKelley,ChristopherStewart,DeveshTiwari,andSaurabhGupta, ”AdaptivePower Profiling for Many-Core HPC Architectures”. International Conference on Autonomic Computing,2016. v Jaimie Kelley, Christopher Stewart, Devesh Tiwari, Sameh Elnikety, and Yuxiong He, ”Measuring and Managing Answer Quality for Online Data-Intensive Services”. Interna- tionalConferenceonAutonomicComputing,2015. Sundeep Kambhampati, Jaimie Kelley, William C. L. Stewart, Christopher Stewart, and RajivRamnath, ”ManagingTinyTasksforData-Parallel,SubsamplingWorkloads”. IEEE InternationalConference onCloudEngineering,2014. Jaimie Kelley, Christopher Stewart, Sameh Elnikety, and Yuxiong He, ”Cache Provision- ingforInteractiveNLPServices”. LargeandDistributedSystemsandMiddleware,2013. Jaimie Kelley and Christopher Stewart, ”Balanced and Predictable Networked Storage”. InternationalWorkshop onDataCenterPerformance,2013. Nan Deng, Christopher Stewart, Jaimie Kelley, Daniel Gmach and Martin Arlitt, ”Adap- tiveGreenHosting”. International ConferenceonAutonomicComputing, 2012. Fields of Study MajorField: Computer ScienceandEngineering vi Table of Contents Page Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. ManagingTinyTasks forData-Parallel,SubsamplingWorkloads . . . . . . . . 9 2.1 SubsamplingWorkloads . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.1 TheCaseforTinyTasks . . . . . . . . . . . . . . . . . . . . . . 14 2.2 ManagingTinyTasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Job-vsTask-level Recovery . . . . . . . . . . . . . . . . . . . . 18 2.2.2 PlatformSelection . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3 TaskSizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 ExperimentalSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3. AdaptivePowerProfiling forMany-CoreHPCArchitectures . . . . . . . . . . 39 3.1 ExperimentalMethodology . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1.1 Powermeasurement . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1.2 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.1.3 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.1.4 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 ObservationsonPowerConsumption . . . . . . . . . . . . . . . . . . . 46 vii 3.3 PredictingPeakPowerusingReferenceWorkloads . . . . . . . . . . . . 51 3.4 AnalyzingthePower ConsumptionProfileofScientificApplications . . . 53 3.5 AdaptivePower Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.5.1 OurProfilingMethod . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5.3 CornerCases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.6 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4. BalancedandPredictable NetworkedStorage . . . . . . . . . . . . . . . . . . 67 4.1 Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.1 OutliersinNetworkedStorage . . . . . . . . . . . . . . . . . . . 71 4.1.2 WorkloadsthatReduce BigData . . . . . . . . . . . . . . . . . 72 4.2 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3 ModellingOutliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4 ReplicationforPredictability . . . . . . . . . . . . . . . . . . . . . . . . 79 4.5 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5. CacheProvisioning forInteractiveNLPServices . . . . . . . . . . . . . . . . 86 5.1 NLPWorkloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.1 DefiningQuality Loss . . . . . . . . . . . . . . . . . . . . . . . 90 5.2 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.1 ComparingNLP Datasets . . . . . . . . . . . . . . . . . . . . . 93 5.2.2 CacheReplacement Policies . . . . . . . . . . . . . . . . . . . . 94 5.2.3 WholeDistribution Analysis . . . . . . . . . . . . . . . . . . . . 95 5.2.4 CacheProvisioning onQualityLoss . . . . . . . . . . . . . . . . 96 5.2.5 Additionalissues . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.3 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6. ObtainingandManaging AnswerQuality forOnlineData-IntensiveServices . . . . . . . . . . . . . . . . . . . . . . . . 102 6.1 BackgroundonOLDI Services . . . . . . . . . . . . . . . . . . . . . . . 106 6.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.3.1 DesignGoals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.3.2 Timeliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.3.3 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.3.4 LowOverhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.3.5 LowCost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.3.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 viii 6.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.4.1 InterfaceandUsers . . . . . . . . . . . . . . . . . . . . . . . . 122 6.4.2 TransparentContextTracking . . . . . . . . . . . . . . . . . . . 123 6.4.3 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.4.4 Optimizationsfor LowOverhead . . . . . . . . . . . . . . . . . 131 6.4.5 DeterminingFront-End Components . . . . . . . . . . . . . . . 132 6.5 ExperimentalEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.5.1 MetricsofMerit . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.5.2 CompetingDesigns andImplementations . . . . . . . . . . . . . 135 6.5.3 OLDIServices . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.6 OnlineManagement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.7 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.7.1 Approximationfor Performance . . . . . . . . . . . . . . . . . . 150 6.7.2 QueryTagging . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.7.3 TimeoutToggling: AdaptiveConfiguration . . . . . . . . . . . . 153 6.7.4 AdaptiveResource Allocation . . . . . . . . . . . . . . . . . . . 155 7. RapidIn-situCharacterization forCo-LocatedWorkloads . . . . . . . . . . . . 156 7.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.1.1 DesignGoals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.1.2 DesignParameters . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.1.3 DesignLimitations . . . . . . . . . . . . . . . . . . . . . . . . . 162 7.2 QuikoloImplementation . . . . . . . . . . . . . . . . . . . . . . . . . . 162 7.2.1 FeatureCollection . . . . . . . . . . . . . . . . . . . . . . . . . 164 7.2.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 7.3 ExperimentalEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.3.2 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.3.3 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.4 DurationStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 7.4.1 StatisticalConvergence . . . . . . . . . . . . . . . . . . . . . . 171 7.5 FeaturesStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.5.1 WhichFeatures Matter . . . . . . . . . . . . . . . . . . . . . . . 177 7.6 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 ix

Description:
”Measuring and Managing Answer Quality for Online Data-Intensive Services”. Microsoft. Azure. Cost ($/m o n th. ) Colocated. Dedicated. Figure 1.1: 4 cores in the cloud cost less if workloads colocate. If not enough data is In our setup, the master node also decides on task sizes by creating.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.