Resource allocation in hard real-time avionic systems. Scheduling and routing problems Ahmad Al Sheikh To cite this version: Ahmad Al Sheikh. Resource allocation in hard real-time avionic systems. Scheduling and routing problems. Automatique / Robotique. INSA de Toulouse, 2011. Français. NNT: . tel-00631443 HAL Id: tel-00631443 https://theses.hal.science/tel-00631443 Submitted on 12 Oct 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. (cid:0) (cid:0) (cid:37)(cid:78)(cid:0)(cid:86)(cid:85)(cid:69)(cid:0)(cid:68)(cid:69)(cid:0)(cid:76)(cid:7)(cid:79)(cid:66)(cid:84)(cid:69)(cid:78)(cid:84)(cid:73)(cid:79)(cid:78)(cid:0)(cid:68)(cid:85)(cid:0) (cid:37)(cid:48)(cid:36)(cid:53)(cid:48)(cid:51)(cid:34)(cid:53)(cid:1)(cid:37)(cid:38)(cid:1)(cid:45)(cid:8)(cid:54)(cid:47)(cid:42)(cid:55)(cid:38)(cid:51)(cid:52)(cid:42)(cid:53)(cid:178)(cid:1)(cid:37)(cid:38)(cid:1)(cid:53)(cid:48)(cid:54)(cid:45)(cid:48)(cid:54)(cid:52)(cid:38)(cid:1) (cid:0) (cid:36)(cid:207)(cid:76)(cid:73)(cid:86)(cid:82)(cid:207)(cid:0)(cid:80)(cid:65)(cid:82)(cid:0)(cid:26) InstitutNationaldesSciencesAppliquéesdeToulouse(INSAToulouse) (cid:0) (cid:1) (cid:36)(cid:73)(cid:83)(cid:67)(cid:73)(cid:80)(cid:76)(cid:73)(cid:78)(cid:69)(cid:0)(cid:79)(cid:85)(cid:0)(cid:83)(cid:80)(cid:207)(cid:67)(cid:73)(cid:65)(cid:76)(cid:73)(cid:84)(cid:207)(cid:0)(cid:26) SystèmesInformatiquesetSystèmesEmbarqués (cid:0) (cid:0) (cid:48)(cid:82)(cid:207)(cid:83)(cid:69)(cid:78)(cid:84)(cid:207)(cid:69)(cid:0)(cid:69)(cid:84)(cid:0)(cid:83)(cid:0)(cid:79)(cid:85)(cid:84)(cid:69)(cid:78)(cid:85)(cid:69)(cid:0)(cid:80)(cid:65)(cid:82)(cid:0)(cid:26)(cid:0) AhmadA(cid:0)LSHEIKH (cid:76)(cid:69)(cid:0)(cid:26) 2 8Septembre2011 (cid:0) (cid:0) (cid:52)(cid:73)(cid:84)(cid:82)(cid:69)(cid:0)(cid:26) (cid:0) Resourceallocationinhardreal-timeavionicsystems - (cid:0) Schedulingandroutingproblems (cid:0) (cid:0) (cid:37)(cid:67)(cid:79)(cid:76)(cid:69)(cid:0)(cid:68)(cid:79)(cid:0)(cid:67)(cid:84)(cid:79)(cid:82)(cid:65)(cid:76)(cid:69)(cid:0)(cid:26) Système(cid:0)s(EDSYS) (cid:53)(cid:78)(cid:73)(cid:84)(cid:207)(cid:0)(cid:68)(cid:69)(cid:0)(cid:82)(cid:69)(cid:0) (cid:67)(cid:72)(cid:69)(cid:82)(cid:67)(cid:72)(cid:69)(cid:0)(cid:26) LAAS-CNRS (cid:36)(cid:73)(cid:82)(cid:69)(cid:67)(cid:84)(cid:69)(cid:85)(cid:82)(cid:8)(cid:83)(cid:9)(cid:0)(cid:68)(cid:69)(cid:0)(cid:52)(cid:72)(cid:210)(cid:83)(cid:69)(cid:0)(cid:26) OlivierBRUN(LAAS-CNRS) Pierre-EmmanuelHLADIK(LAAS-CNRS) (cid:50)(cid:65)(cid:80)(cid:80)(cid:79)(cid:82)(cid:84)(cid:69)(cid:85)(cid:82)(cid:83)(cid:0)(cid:26) SanjoyBARUAH(UniversityofNorthCarolina) (cid:0) YvesSOREL(INRIA) (cid:0) M(cid:69)(cid:77)(cid:66)(cid:82)(cid:69)(cid:8)(cid:83)(cid:9)(cid:0)(cid:68)(cid:85)(cid:0)(cid:74)(cid:85)(cid:82)(cid:89)(cid:0): FrédéricBONIOL(ONERA) JoëlGOOSSENS(UniversitéLibredeBruxelles) ii Acknowledgements First and foremost, my appreciation goes to my doctoral advisors, Dr. Olivier Brun and Dr. Pierre- Emmanuel Hladik for their support throughout my PhD. They have successfully provided me with a fulfilling and motivating work environment in which I have conducted my research. I thank them for thisuniqueexperience forwhichIamdeeplygrateful. IwouldalsoliketooffermyappreciationtoDr. BalakrishnaPrabhuforhissupportandcontribution inmanyoccasions. Hisintervention hadagreatimpactonthedirection thisthesishastook. IwouldliketothanktheJuryforhavingacceptedtoparticipateinmyPhDdefense. Beginningwith Professor SanjoyBaruahandProfessor YvesSorelwhohaveconsecrated muchoftheirtimetoreview mydissertationandgivedetailedfeedbackonmywork,toProfessorFre´de´ricBoniolandProfessorJoe¨l Goossens whoparticipated inexamining myworkandproviding valuable insights totheimprovement ofthequality ofthisthesis. I would like to acknowledge all the participants in the research project SATRIMMAPfor the sup- porttheyhavegivenmethroughout the3yearsofthePhD.Thissupportwasofutmostimportanceand wasessential totheaccomplishment oftheobjectives setbeforeus. Iamextremely grateful forthematesIgottoknowandshare officeswithintheLaboratory ofAr- chitecture andAnalysis ofSystems. Amongthem,Iwouldliketomention Re´miSharrock, Jean-Marie Codol and Aure´lien Gonzalez, for whom Ioffer myfondest regards forall of the timewehave passed together. Ihopeourfriendship continues on. I wish to thank my friends outside work and whom I get to call my second family: Alaa Allouch, HoussamArbess,YahyaSalma,NadimNasreddineandseveralothers. Youweretherenexttomewhen Iwasinneed. Withoutyourcompany,lifewouldn’thavebeenthesameabroad. Finally, I would like to dedicate this thesis to my parents, Mustafa and Mervat, who have raised, taught, supported andguidedmethroughout mylife. iii iv Abstract Thelastcoupleofyearshaveseenaprofoundevolutioninembeddedarchitectureswiththeintroduction ofIntegrated ModularAvionics(IMA).Byofferingtoembeddedapplications astandardized execution and communication support, these architectures have allowed the consequent reduction of physical weight and complexity. This low level reduction of complexity is opposed by an increased difficulty in application conception and integration, as managing resource sharing is through numerous configu- ration parameters. This thesis is devoted to two resource allocation problems that arise in conception phasesofIMA-basedarchitectures. The multiprocessor scheduling problem is first addressed for strictly periodic tasks, or in other words tasks that execute indefinitely in equidistant time intervals. The objective is supposed to be the maximization of the minimal idle time between two tasks while avoiding overlap in temporal ex- ecutions. This allows guaranteeing a minimal evolution margin for the task executions. An integer linear programming based formulation isfirstproposed for this NP-hard problem, integrating allasso- ciated temporalandresource constraints. Toextend scalability, aheuristic inspired fromGameTheory is equally introduced. In this heuristic, each task adopts a scheduling that maximizes its proper util- ity function (related to the evolution margin of tasks). The convergence of this algorithm towards an equilibrium point, where no task has an interest in modifying its strategy, is shown in addition to the presence ofaglobally optimal equilibrium. Theobtained numerical results show thatthis algorithm is muchfasterthantheexactmethodandgivesagoodapproximation. Tofurtheramelioratethequalityof obtained solutions, multi-start methods canbeapplied tothisalgorithm tosupplyprobabilistic guaran- teesontheoptimalityofattainedequilibria. In the second part of the thesis, the message routing problem between avionic functions in the AFDXnetworkisconsidered. ThisnetworkallowsthetransmissionofEthernetframesinwhatiscalled virtuallinks(VL).EachVLcanbeseenasamulticasttreeallowingdatatransmissionfromonepointof thenetworktoseveralothers. Anexactnode-linklinearformulationisfirstintroduced. Thisisfollowed bythepropositionofatwo-levelheuristicthatcompromisesbetweenthefairloaddistributionanddelay minimization inthenetwork. Theobtained results showthatsolutions obtained bytheheuristic canbe veryclosetothoseoftheexactmethodwhilesignificantly ameliorating communication delays. v vi CONTENTS Re´sume´ e´tendu 1 Introduction 23 1 Resourceallocation inavionicsystems 27 1.1 Evolution ofavionic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.2 TheIntegratedModularAvionics architecture . . . . . . . . . . . . . . . . . . . . . . 28 1.2.1 Architecture components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.2.2 Theavionics AFDXnetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.2.3 Partitionsegregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.3 Overviewonthesoftwaredevelopment processdesigninavionics . . . . . . . . . . . 35 1.3.1 Requirements analysis phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.3.2 Systemdesignphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.3.3 Architecture design phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.3.4 Detaileddesignphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.3.5 Codingphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.3.6 Unittestingphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.3.7 Integration testingphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.3.8 Systemtestingphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.3.9 Acceptance testingphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.4 TheresearchprojectSATRIMMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.5 Objectivesofthestudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.5.1 Scheduling objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.5.2 VirtualLinkroutingobjectives . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2 Stateoftheart 43 2.1 Introduction toreal-timesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 vii viii CONTENTS 2.1.1 Hardreal-timesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.1.2 Softreal-timesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2 Generalities onreal-timescheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.1 Real-timetasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.2.2 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.3 Classesofscheduling problems . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.4 Non-preemption inscheduling problems . . . . . . . . . . . . . . . . . . . . . 49 2.2.5 Schedulability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.3 Embeddedsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.3.1 Memorymanagement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.3.2 Distributed systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.3 Energyconsumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.4 Fault-tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.3.5 Otherconsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.4 Complexityofscheduling problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.5 Real-timescheduling algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.5.1 Uniprocessor scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.5.2 Multiprocessor scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.5.3 Non-preemptive andstrictly periodicmultiprocessor scheduling . . . . . . . . 59 2.6 Theoretic conceptsforthethesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.6.1 Particularities ofthestudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.6.2 Someknownsolution strategies . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.6.3 Gametheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3 MILPformulation oftheschedulingproblem 67 3.1 Problemdefinitions andmodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1.1 Modulemodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.1.2 Partitionmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.3 Communication model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2 Problemformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.2.1 Temporalscheduling constraints . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.2.2 Resourceconstraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.2.3 Communication delayorlatencyconstraints . . . . . . . . . . . . . . . . . . . 75 3.2.4 Formulationasamixedintegerlinearprogram . . . . . . . . . . . . . . . . . 77 3.3 Pre-treatment usinggraphtheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4 Abest-responseschedulingalgorithm 85 4.1 Uniprocessor orsinglemodulescheduling . . . . . . . . . . . . . . . . . . . . . . . . 86 4.1.1 Uniprocessor best-response . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.1.2 Properties ofthebest-response algorithm . . . . . . . . . . . . . . . . . . . . 88 4.1.3 Computingthebest-response . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 CONTENTS ix 4.1.4 Computingtheintersection points . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2 Multiprocessor Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.1 Initialallocation inthemultiprocessor setting . . . . . . . . . . . . . . . . . . 101 4.3 Multi-start withbayesian stopping rules . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.3.1 Stoppingrules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.4.1 Largescaleandindustrial applications . . . . . . . . . . . . . . . . . . . . . . 107 4.4.2 Multi-start results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.4.3 Processor minimizationcontext . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5 VirtualLinkrouting 115 5.1 VirtualLinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.2 Problemdescription andrelatedwork . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.3 Formaldefinition oftheproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.4 Anexactnode-link formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.5 Two-levelVLroutingalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.5.1 Steinertreeproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.5.2 IterativeLoadingofSteinerTrees(ILST) . . . . . . . . . . . . . . . . . . . . 122 5.5.3 VirtualLinkRoutingOptimization (VLRO) . . . . . . . . . . . . . . . . . . . 124 5.6 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Conclusion 129 A Maximalindependentsetandmaximumcliqueproblems 133 B Listofpublications 135 Bibliography 137
Description: