ebook img

Representations of Lie Algebras: An Introduction Through gl(n) PDF

166 Pages·2012·2.212 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Representations of Lie Algebras: An Introduction Through gl(n)

Representations of Lie Algebras ThisboldandrefreshingapproachtoLiealgebrasassumesonlymodestprerequisites (linear algebra up to the Jordan canonical form and a basic familiarity with groups andrings),yetitreachesamajorresultinrepresentationtheory:thehighest-weight classificationofirreduciblemodulesofthegenerallinearLiealgebra.Theauthor’s exposition is focused on this goal rather than on aiming at the widest generality, and emphasis is placed on explicit calculations with bases and matrices. The book beginswithamotivatingchapterexplainingthecontextandrelevanceofLiealgebras and their representations and concludes with a guide to further reading. Numerous examplesandexerciseswithfullsolutionsareincluded. Basedontheauthor’sownintroductorycourseonLiealgebras,thisbookhasbeen thoroughlyroad-testedbyadvancedundergraduateandbeginninggraduatestudents andisalsosuitedtoindividualreaderswantinganintroductiontothisimportantarea ofmathematics. https://doi.org/10.1017/CBO9781139236126 AUSTRALIANMATHEMATICALSOCIETYLECTURESERIES Editor-in-Chief:ProfessorC.Praeger,SchoolofMathematicsandStatistics, UniversityofWesternAustralia,Crawley,WA6009,Australia Editors: ProfessorP.Broadbridge,SchoolofEngineeringandMathematicalSciences,LaTrobeUniversity, Victoria3086,Australia ProfessorM.Murray,SchoolofMathematicalSciences,UniversityofAdelaide,SA5005,Australia ProfessorC.E.M.Pearce,SchoolofMathematicalSciences,UniversityofAdelaide, SA5005,Australia ProfessorM.Wand,SchoolofMathematicalSciences,UniversityofTechnology, Sydney,NSW2007,Australia 1 IntroductiontoLinearandConvexProgramming,N.CAMERON 2 ManifoldsandMechanics,A.JONES,A.GRAY&R.HUTTON 3 IntroductiontotheAnalysisofMetricSpaces,J.R.GILES 4 AnIntroductiontoMathematicalPhysiologyandBiology,J.MAZUMDAR 5 2-KnotsandtheirGroups,J.HILLMAN 6 TheMathematicsofProjectilesinSport,N.DEMESTRE 7 ThePetersenGraph,D.A.HOLTON&J.SHEEHAN 8 LowRankRepresentationsandGraphsforSporadicGroups, C.E.PRAEGER&L.H.SOICHER 9 AlgebraicGroupsandLieGroups,G.I.LEHRER(ed.) 10 ModellingwithDifferentialandDifferenceEquations, G.FULFORD,P.FORRESTER&A.JONES 11 GeometricAnalysisandLieTheoryinMathematicsandPhysics, A.L.CAREY&M.K.MURRAY(eds.) 12 FoundationsofConvexGeometry,W.A.COPPEL 13 IntroductiontotheAnalysisofNormedLinearSpaces,J.R.GILES 14 Integral:AnEasyApproachafterKurzweilandHenstock, L.P.YEE&R.VYBORNY 15 GeometricApproachestoDifferentialEquations, P.J.VASSILIOU&I.G.LISLE(eds.) 16 IndustrialMathematics,G.R.FULFORD&P.BROADBRIDGE 17 ACourseinModernAnalysisanditsApplications,G.COHEN 18 Chaos:AMathematicalIntroduction,J.BANKS,V.DRAGAN&A.JONES 19 QuantumGroups,R.STREET 20 UnitaryReflectionGroups,G.I.LEHRER&D.E.TAYLOR 21 LecturesonRealAnalysis,F.LÁRUSSON AustralianMathematicalSocietyLectureSeries:22 Representations of Lie Algebras An Introduction Through gl n ANTHONY HENDERSON SchoolofMathematicsandStatistics UniversityofSydney CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress, NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107653610 (cid:2)c AnthonyHenderson2012 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2012 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Henderson,Anthony,1976-author. RepresentationsofLiealgebras:anintroductionthroughgln/AnthonyHenderson,Schoolof MathematicsandStatistics,UniversityofSydney. pages cm.–(AustralianMathematicalSocietylectureseries;22) ISBN978-1-107-65361-0(pbk.) 1. RepresentationsofLiealgebras. I. Title. QA252.3.H46 2012 512(cid:2).482–dc23 2012021841 ISBN978-1-107-65361-0Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Preface pagevii Notationalconventions ix 1 Motivation:representationsofLiegroups 1 1.1 Homomorphismsofgenerallineargroups 1 1.2 Multilinearalgebra 3 1.3 Linearizationoftheproblem 7 1.4 Lie’stheorem 10 2 DefinitionofaLiealgebra 13 2.1 Definitionandfirstexamples 13 2.2 Classificationandisomorphisms 15 2.3 Exercises 18 3 BasicstructureofaLiealgebra 21 3.1 Liesubalgebras 21 3.2 Ideals 24 3.3 QuotientsandsimpleLiealgebras 27 3.4 Exercises 31 4 ModulesoveraLiealgebra 33 4.1 Definitionofamodule 33 4.2 Isomorphismofmodules 38 4.3 Submodulesandirreduciblemodules 41 4.4 Completereducibility 44 4.5 Exercises 47 5 Thetheoryofsl -modules 50 2 5.1 Classificationofirreducibles 50 5.2 Completereducibility 55 5.3 Exercises 57 v vi Contents 6 Generaltheoryofmodules 60 6.1 Dualsandtensorproducts 60 6.2 Hom-spacesandbilinearforms 65 6.3 Schur’slemmaandtheKillingform 68 6.4 Casimiroperators 72 6.5 Exercises 75 7 Integralgl -modules 78 n 7.1 Integralweights 78 7.2 Highest-weightmodules 86 7.3 Irreducibilityofhighest-weightmodules 90 7.4 Tensor-productconstructionofirreducibles 93 7.5 Completereducibility 99 7.6 Exercises 104 8 Guidetofurtherreading 106 8.1 ClassificationofsimpleLiealgebras 106 8.2 RepresentationsofsimpleLiealgebras 109 8.3 Charactersandbasesofrepresentations 111 Appendix Solutionstotheexercises 115 SolutionsforChapter2exercises 115 SolutionsforChapter3exercises 122 SolutionsforChapter4exercises 127 SolutionsforChapter5exercises 132 SolutionsforChapter6exercises 137 SolutionsforChapter7exercises 144 References 153 Index 154 Preface Theaimofthisbook Why another introduction to Lie algebras? The subject of this book is one of the areas of algebra that has been most written about. The basic theory was unearthed morethanacenturyagoandhasbeenpolishedinalongchainoftextbookstoasheen ofclassicalperfection.Experts’shelvesaregracedbythethreevolumesofBourbaki [1]; for students with the right background and motivation to learn from them, the expositions in the books by Humphreys [10], Fulton and Harris [6], and Carter [2] could hardly be bettered; and there is a recent undergraduate-level introduction by ErdmannandWildon[4].Sowhereistheneedforthisbook? TheanswercomesfrommyownexperienceinteachingcoursesonLiealgebrasto Australianhonours-levelundergraduates(seetheAcknowledgementssection).Such coursestypicallyconsistof24one-hourlectures.Atmyownuniversitythealgebraic background knowledge of the students would be: linear algebra up to the Jordan canonicalform,thebasictheoryofgroupsandrings,therudimentsofgrouprepre- sentationtheory,andalittlemultilinearalgebrainthecontextofdifferentialforms. From that starting point, I have found it difficult to reach any peak of the theory byfollowingtheconventionalroute.Mydefinitionofapeakincludestheclassifica- tion of simple Lie algebras, the highest-weight classification of their modules, and thecombinatoricsofcharacters,tensorproducts,andcrystalbases;by‘theconven- tional route’ I mean the path signposted by the theorems of Engel and Lie (about solvability), Cartan (about the Killing form), Weyl (about complete reducibility), andSerre,asinthebookbyHumphreys[10].Followingthatpathwithoutskipping proofsalwaysseemedtorequiremorethan24lectures. Thesolutionadoptedinthisbookisdrastic.Ihaveabandonedthewiderclassof simpleLiealgebras,focusinginsteadonthegenerallinearLiealgebragl ,whichis n almost, but not quite, simple. I have jettisoned all five of the aforementioned theo- rems, in favour of arguments specific to gl , especially the use of explicit Casimir n operators.Althoughtheseomissionsmayshocktheexperts,Ihavefoundthistobe anapproachthatismoreaccessibleandyetstillreachesonepeak:theclassification ofgl -modulesbytheirhighestweights. n vii viii Preface Ihavestartedthejourneywithamotivatorychapter,whichgivessomeexplanation ofwhyalgebraistscareaboutthisclassificationandalsointroducessomenecessary multilinearalgebra.Chapters2to4coverthebasicdefinitionsofLiealgebras,homo- morphismsandisomorphisms,subalgebras,ideals,quotients,modules,irreducibility andcompletereducibility.Inalecturecourse,thematerialinthesefirstfourchapters wouldtypicallytakeabout12hours;sotheelegantsl theoryinChapter5isreached 2 relativelyearly.TheninChapter6Ireturntothetheoryofmodules,coveringtensor products,bilinearforms,Schur’slemma,andCasimiroperators. InChapter 7thesetoolsareused todevelop thehighest-weight theory. Myhope isthatstudentswhoreachtheendofChapter7willbeinspiredtoprogresstomore comprehensivebooks,andChapter8isintendedasamapofwhatliesahead. Acknowledgements This book began life as a set of lecture notes for my Lie algebras course in the 2004 Australian Mathematical Sciences Institute (AMSI) Summer School. It was extensively revised over the next seven years, as I taught the subject again for the summer school and as an honours course at the University of Sydney. Most of the exerciseswereoriginallyassignmentorexamquestions. IwouldliketothankAMSIfortheinitialopportunitytoteachthisbeautifulsub- ject,andthestudentsinallthoseclassesfortheirfeedback.Iwouldalsoliketothank PramodAchar,WaiLingYee,CherylPraeger,andtheanonymousreviewersfortheir valuablesuggestionsandencouragingcomments. Notational conventions Tosimplifymatters,wemakeastandingconvention: AllvectorspacesareoverCandfinite-dimensional. Thefinite-dimensionalityassumptionallowstheexplicitcalculationswithbasesand matricesthatareafeatureofthebook.Then×nidentitymatrixiswritten1 ,and n the identity transformation of a vector space V is written 1 . The elements of the V vectorspaceCn arealwaysthoughtofascolumnvectors;lineartransformationsof this particular vector space are tacitly identified with n×n matrices (multiplying on the left of the vectors). The bases of vector spaces are considered to be ordered setsandhencearewrittenwithoutsetbraces.Thespanoftheelementsv ,...,v is 1 k writtenC{v ,...,v }.Theterm‘subspace’alwaysmeans‘sub-vector-space’.IfW 1 k and W(cid:2) aresubspaces ofalarger vector space V thenW ⊕W(cid:2) denotes theirsum, anditisimpliedthatW ∩W(cid:2) ={0}(an‘internaldirectsum’);ifW andW(cid:2)arenot subspacesofalargervectorspaceV thenW ⊕W(cid:2) meansthe‘externaldirectsum’ {(w,w(cid:2))|w ∈ W,w(cid:2) ∈ W(cid:2)}. The same principles apply to direct sums with more thantwosummands. Onitsrareappearances,thesquarerootof−1iswrittenitodistinguishitfromthe italicletteri,whichiswidelyusedforotherpurposes.Thegroupofnonzerocomplex numbersiswrittenC×.ThesetofnonnegativeintegersiswrittenN.Othernotation willbeexplainedasitisneeded. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.