ebook img

Representations of Elementary Abelian p-Groups and Vector Bundles PDF

348 Pages·2016·2.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Representations of Elementary Abelian p-Groups and Vector Bundles

CAMBRIDGE TRACTS IN MATHEMATICS GeneralEditors B. BOLLOBÁS, W. FULTON, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO 208RepresentationsofElementaryAbelianp-GroupsandVectorBundles CAMBRIDGE TRACTS IN MATHEMATICS GENERAL EDITORS B. BOLLOBÁS, W. FULTON, F. KIRWAN, P. SARNAK, B. SIMON, B.TOTARO Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/mathematics.Recent titlesincludethefollowing: 173. EnumerationofFiniteGroups.ByS.R.BLACKBURN,P.M.NEUMANN,and G.VENKATARAMAN 174. ForcingIdealized.ByJ.ZAPLETAL 175. TheLargeSieveanditsApplications.ByE.KOWALSKI 176. TheMonsterGroupandMajoranaInvolutions.ByA.A.IVANOV 177. AHigher-DimensionalSieveMethod.ByH.G.DIAMOND,H.HALBERSTAM,and W.F.GALWAY 178. AnalysisinPositiveCharacteristic.ByA.N.KOCHUBEI 179. DynamicsofLinearOperators.ByF.BAYARTandÉ.MATHERON 180. SyntheticGeometryofManifolds.ByA.KOCK 181. TotallyPositiveMatrices.ByA.PINKUS 182. NonlinearMarkovProcessesandKineticEquations.ByV.N.KOLOKOLTSOV 183. PeriodDomainsoverFiniteandp-adicFields.ByJ.-F.DAT,S.ORLIK,andM.RAPOPORT 184. AlgebraicTheories.ByJ.ADÁMEK,J.ROSICKÝ,andE.M.VITALE 185. RigidityinHigherRankAbelianGroupActionsI:IntroductionandCocycleProblem.By A.KATOKandV.NIT¸ICA˘ 186. Dimensions,Embeddings,andAttractors.ByJ.C.ROBINSON 187. Convexity:AnAnalyticViewpoint.ByB.SIMON 188. ModernApproachestotheInvariantSubspaceProblem.ByI.CHALENDARand J.R.PARTINGTON 189. NonlinearPerron–FrobeniusTheory.ByB.LEMMENSandR.NUSSBAUM 190. JordanStructuresinGeometryandAnalysis.ByC.-H.CHU 191. MalliavinCalculusforLévyProcessesandInfinite-DimensionalBrownianMotion.By H.OSSWALD 192. NormalApproximationswithMalliavinCalculus.ByI.NOURDINandG.PECCATI 193. DistributionModuloOneandDiophantineApproximation.ByY.BUGEAUD 194. MathematicsofTwo-DimensionalTurbulence.ByS.KUKSINandA.SHIRIKYAN 195. AUniversalConstructionforGroupsActingFreelyonRealTrees.ByI.CHISWELLand T.MÜLLER 196. TheTheoryofHardy’sZ-Function.ByA.IVIC´ 197. InducedRepresentationsofLocallyCompactGroups.ByE.KANIUTHandK.F.TAYLOR 198. TopicsinCriticalPointTheory.ByK.PERERAandM.SCHECHTER 199. CombinatoricsofMinusculeRepresentations.ByR.M.GREEN 200. SingularitiesoftheMinimalModelProgram.ByJ.KOLLÁR 201. CoherenceinThree-DimensionalCategoryTheory.ByN.GURSKI 202. CanonicalRamseyTheoryonPolishSpaces.ByV.KANOVEI,M.SABOK,and J.ZAPLETAL 203. APrimerontheDirichletSpace.ByO.EL-FALLAH,K.KELLAY, J.MASHREGHI,andT.RANSFORD 204. GroupCohomologyandAlgebraicCycles.ByB.TOTARO 205. RidgeFunctions.ByA.PINKUS 206. ProbabilityonRealLieAlgebras.ByU.FRANZandN.PRIVAULT 207. AuxiliaryPolynomialsinNumberTheory.ByD.MASSER 208. RepresentationsofElementaryAbelianp-GroupsandVectorBundles.ByD.J.BENSON Representations of Elementary Abelian p-Groups and Vector Bundles DAVID J. BENSON UniversityofAberdeen UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 4843/24,2ndFloor,AnsariRoad,Daryaganj,Delhi–110002,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107174177 DOI:10.1017/9781316795699 (cid:2)c DavidJ.Benson2017 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2017 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Benson,D.J.(DavidJ.),1955– Title:Representationsofelementaryabelianp-groupsandvectorbundles/ DavidJ.Benson,UniversityofAberdeen. Description:Cambridge:CambridgeUniversityPress,[2017]| Series:Cambridgetractsinmathematics;208| Includesbibliographicalreferencesandindex. Identifiers:LCCN2016046127|ISBN9781107174177(alk.paper) Subjects:LCSH:Abelianp-groups.|Abeliangroups.|Vectorbundles. Classification:LCCQA180.B462017|DDC512/.25–dc23 LCrecordavailableathttps://lccn.loc.gov/2016046127 ISBN978-1-107-17417-7Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyInternetWebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchWebsitesis,orwillremain, accurateorappropriate. Contents Preface pagexi Introduction xiii 1 ModularRepresentationsandElementaryAbelianGroups 1 1.1 Introduction 1 1.2 RepresentationType 1 1.3 ShiftedSubgroups 3 1.4 TheLanguageofπ-Points 5 1.5 TheStableModuleCategory 6 1.6 TheDerivedCategory 8 1.7 SingularityCategories 10 1.8 CohomologyofElementaryAbelian p-Groups 12 1.9 Chouinard’sTheorem,Dade’sLemmaandRankVarieties 15 1.10 Carlson’s Lζ Modules,andaMatrixVersion 18 1.11 DiagramsforModules 20 1.12 TensorProducts 24 1.13 Duality 26 1.14 SymmetricandExteriorPowers 28 1.15 SchurFunctions 29 1.16 SchurFunctors 31 1.17 RadicalLayersofkE 33 1.18 TwistedVersionsofkE 35 2 CyclicGroupsofOrder p 38 2.1 Introduction 38 2.2 ModulesforZ/p 38 2.3 TensorProducts 39 2.4 GaussianPolynomials 41 2.5 GeneralisedGaussianPolynomialsandaHookFormula 42 v vi Contents 2.6 λ-RingsandRepresentationsof SL(2,C) 45 2.7 TheRepresentationRingofZ/p 47 2.8 SymmetricandExteriorPowersofJordanBlocks 50 2.9 SchurFunctorsfor SL(2,C)andZ/p 52 3 BackgroundfromAlgebraicGeometry 54 3.1 AffineSpaceandAffineVarieties 54 3.2 GenericPointsandClosedPoints 55 3.3 ProjectiveSpaceandProjectiveVarieties 57 3.4 TangentSpaces 59 3.5 PresheavesandSheaves 60 3.6 StalksandSheafification 62 3.7 TheLanguageofSchemes 63 3.8 SheavesofModules 64 3.9 CoherentSheavesonProjectiveVarieties 65 3.10 CohomologyofSheaves 69 4 JordanType 72 4.1 Nilvarieties 72 4.2 MatricesandTangentSpaces 75 4.3 ATheoremofGerstenhaber 76 4.4 DominanceOrderandNilpotentJordanTypes 78 4.5 GenericandMaximalJordanType 83 4.6 TensorProducts 86 5 ModulesofConstantJordanType 89 5.1 IntroductionandDefinitions 89 5.2 HomogeneousModules 94 5.3 AnExactCategory 98 5.4 EndotrivialModules 101 5.5 WildRepresentationType 103 5.6 TheConstantImageProperty 106 5.7 TheGenericKernel 110 5.8 TheSubquotientRad−1K(M)/Rad2K(M) 112 5.9 TheConstantKernelProperty 114 5.10 TheGenericImage 116 5.11 W-Modules 118 5.12 ConstantJordantypewithOneNon-ProjectiveBlock 119 5.13 Rickard’sConjecture 120 5.14 ConsequencesandVariations 123 5.15 FurtherConjectures 127 6 VectorBundlesonProjectiveSpace 129 6.1 DefinitionsandFirstProperties 129 6.2 TestsforVectorBundles 131 Contents vii 6.3 VectorBundlesonProjectiveSpace 134 6.4 TheTangentBundleandtheEulerSequence 136 6.5 HomogeneityandUniformity 136 6.6 MonadsandSubquotients 138 6.7 TheNullCorrelationBundle 139 6.8 TheExamplesofTango 140 6.9 CohomologyofProjectiveSpace 141 6.10 DifferentialFormsandBott’sTheorem 142 6.11 Simplicity 143 6.12 Hilbert’sSyzygyTheorem 146 7 ChernClasses 149 7.1 ChernClassesofGradedModules 149 7.2 ChernClassesofCoherentSheavesonPr−1 151 7.3 SomeComputations 154 7.4 RestrictionofVectorBundles 155 7.5 ChernNumbersofTwistsandDuals 157 7.6 ChernRoots 159 7.7 PowerSums 160 7.8 TheHirzebruch–Riemann–RochTheorem 166 7.9 ChernNumbersandtheFrobeniusMap 169 8 ModulesofConstantJordanTypeandVectorBundles 172 8.1 Introduction 172 8.2 TheOperatorθ 173 8.3 TheActionofθ onFibres 174 8.4 TheFunctorsFi andFi,j 176 8.5 TwistsandSyzygies 181 8.6 ChernNumbersofF (M) 183 i 8.7 TheConstruction: p =2 185 8.8 TheConstruction: pOdd 187 8.9 ProofoftheRealisationTheorem 189 8.10 Functoriality 192 8.11 TensorProducts 192 8.12 NegativeTateCohomology 194 8.13 TheBGGCorrespondence 195 9 Examples 199 9.1 Modulesfor(Z/2)2 199 9.2 Modulesfor(Z/p)2 201 9.3 LargerRank 203 9.4 Nilvarieties 204 9.5 TheTangentandCotangentBundles 205 9.6 TheNullCorrelationBundle, p =2 207 viii Contents 9.7 TheNullCorrelationBundle, pOdd 208 9.8 InstantonBundles 210 9.9 Schwarzenberger’sBundles 212 9.10 TheExamplesofTango 214 9.11 TheHorrocks–MumfordBundle 215 9.12 AutomorphismsoftheHorrocks–MumfordBundle 218 9.13 RealisingtheHorrocks–MumfordBundle 223 9.14 TheHorrocksParentBundleandtheTangoBundle 226 10 RestrictionsComingfromChernNumbers 232 10.1 MatricesofConstantRank 232 10.2 CongruencesonChernNumbers 235 10.3 RestrictionsonStableJordanType, pOdd 237 10.4 EliminatingMoreStableJordanTypes 238 10.5 RestrictionsonJordanTypefor p =2 240 10.6 ApplyingHirzebruch–Riemann–Rochfor p = 2:The Casem =0 244 10.7 BypassingHirzebruch–Riemann–Roch 246 10.8 ApplyingandBypassingHirzebruch–Riemann–Rochfor p =2:TheCase1≤m ≤r −3 246 10.9 NilvarietiesofConstantJordanType[p]n for p ≥3 249 10.10 NilvarietieswithaSingleJordanBlock 251 10.11 BabylonianTowers 253 11 Orlov’sCorrespondence 255 11.1 Introduction 255 11.2 MaximalCohen–MacaulayModules 257 11.3 TheOrlovCorrespondence 259 11.4 TheFunctors 261 11.5 AnExample 263 11.6 TheBidirectionalKoszulComplex 264 11.7 ABimoduleResolution 267 11.8 TheAdjunction 269 11.9 TheEquivalence 269 11.10 TheTrivialModule 270 11.11 ComputerAlgebra 272 11.12 Cohomology 272 11.13 TwistedVersionsofkE 274 12 PhenomenologyofModulesoverElementaryAbelian p-Groups 276 12.1 Introduction 276 12.2 ModuleConstructions 278 12.3 OddPrimesAreMoreDifficult 280 12.4 RelativeCohomology 281

Description:
Questions about modular representation theory of finite groups can often be reduced to elementary abelian subgroups. This is the first book to offer a detailed study of the representation theory of elementary abelian groups, bringing together information from many papers and journals, as well as unp
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.