ebook img

Renormalization: An Introduction PDF

240 Pages·1999·6.849 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Renormalization: An Introduction

Texts and Monographs in Physics Series Editors: R. Balian W. Beiglbock H. Grosse E. H. Lieb N. Reshetikhin H. Spohn W. Thirring Springer-Verlag Berlin Heidelberg GmbH Texts and Monographs in Physics Series Editors: R. Balian W Beiglb6ck H. Grosse E. H. Lieb N. Reshetikhin H. Spohn W Thirring From Microphysics to Macrophysics Supersymmetric Methods in Quantum I + II Methods and Applications and Statistical Physics By G. Junker of Statistical Physics By R. Balian CP Violation Without Strangeness Variational Methods in Mathematical Electric Dipole Moments of Particles, Physics A Unified Approach Atoms, and Molecules By P. Blanchard and E. Briining By I. B. Khriplovich and S. K. Lamoreaux Multi-Hamiltonian Theory Quantum Groups of Dynamical Systems and Their Representations By M. staszak By A. Klimyk and K. Schmiidgen Quantum Mechanics: Inverse Schrodinger Scattering Foundations and Applications in Three Dimensions 3rd enlarged edition By A. B5hm By R. G. Newton Operator Algebras and Quantum Scattering Theory of Waves Statistical Mechanics I + II 2nd edition and Particles 2nd edition By O. Bratteli and D. W. Robinson By R. G. Newton Statistical Methods Quantum Entropy and Its Use in Quantum Optics 1 By M. Ohya and D. Petz Master Equations Generalized Coherent States and Fokker-Planck Equations and Their Applications By H. J. Carmichael By A. Perelomov Geometry of the Standard Model Path Integral Approach of Elementary Particles to Quantum Physics An Introduction By A. Derdzinski 2nd printing By G. Roepstorff Scattering Theory of Classical Renormalization An Introduction and Quantum N-Particle Systems By M. Salmhofer By J. Derezinski and C. Gerard Finite Quantum Electrodynamics Effective Lagrimgians The Causal Approach 2nd edition for the Standard Model By G. Scharf By A. Dobado, A. Gomez-Nicola, From Electrostatics to Optics A. L. Maroto and J. R. Pelaez A Concise Electrodynamics Course Quantum By G. Scharf The Quantum Theory of Particles, Fields, The Mechanics and Thermodynamics and Cosmology By E. Elbaz of Continuous Media By M. Silhavy Quantum Relativity Large Scale Dynamics of Interacting A Synthesis of the Ideas of Einstein and Heisenberg Particles By H. Spohn By D. R. Finkelstein The Theory of Quark and Gluon Quantum Mechanics I + II Interactions 2nd completely revised By A. Galindo and P. Pascual and enlarged edition By F. 1. Yndurain The Elements of Mechanics Relativistic Quantum Mechanics By G. Gallavotti and Introduction to Field Theory By F. J. Yndurain Local Quantum Physics Fields, Particles, Algebras 2nd revised and enlarged edition ByR. Haag Manfred Salmhofer Renormalization An Introduction With 24 Figures , Springer Prof. Dr. Manfred Salmhofer Mathematik ETH-Zentrum CH-8092 Ziirich, Switzerland Editors Roger Balian Nicolai Reshetikhin CEA Department of Mathematics Service de Physique Theorique de Saclay University of California F-91l91 Gif-sur-Yvette, France Berkeley, CA 94720-3840, USA Wolf BeiglbOck Herbert Spohn Institut fiir Angewandte Mathematik Theoretische Physik Universitiit Heidelberg Ludwig-Maximilians-U ni versitiit Miinchen 1m Neuenheimer Feld 294 TheresienstraBe 37 0-69120 Heidelberg, Germany 0-80333 Miinchen, Germany Harald Grosse Walter Thirring Institut fiir Theoretische Physik Institut fiir Theoretische Physik Universitiit Wien Universitiit Wien Boltzmanngasse 5 Boltzmanngasse 5 A-I 090 Wien, Austria A-1090 Wien, Austria Elliott H. Lieb Jadwin Hall Princeton University, P. O. Box 708 Princeton, NJ 08544-0708, USA Library of Congress Cataloging-in-Publication Data Salmhofer, Manfred, 1964- Renormalization: an introduction 1 Manfred Salmhofer. p. cm. - (Texts and monographs in physics, ISSN 0172-5998) Includes bibliographical references and index. ISBN 978-3-642-08430-0 ISBN 978-3-662-03873-4 (eBook) DOI 10.1007/978-3-662-03873-4 QCI74.17.R46S35 1998 530.1'43-dc21 98-40042 CIP ISSN 0172-5998 ISBN 978-3-642-08430-0 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1999 Originally published by Springer-Verlag Berlin Heidelberg New York in 1999 Softcover reprint of the hardcover 1st edition 1999 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: Camera-ready copy from the author using a Springer TE X macro package Cover design: design & production GmbH, Heidelberg SPIN: 10652045 55/3144-543210 -Printed on acid-free paper Preface Why another book on the renormalization of field theory? This book aims to contribute to the bridging of the gap between the treatments of renor malization in physics courses and the mathematically rigorous approach. It provides a simple but rigorous introduction to perturbative renormalization, and, in doing so, also equips the reader with some basic techniques which are a prerequisite for studying renormalization nonperturbatively. Beside these technical issues, it also contains a proof of renormalizability of ¢4 theory in d :5 4 dimensions and a discussion of renormalization for systems with a Fermi surface, which are realistic models for electrons in metals. Like the two courses on which it is based, the book is intended to be easily accessible to mathematics and physics students from the third year on, and after going through it, one should be able to start reading the current literature on the subject, in particular on nonperturbative renormalization. Chapter 1 provides a brief motivation for studying quantum theory by functional integrals, as well as the setup. In Chap. 2, the techniques of Gaus sian integration and Feynman graph expansions are introduced. I then give simple proofs of basic results, such as the theorem that the logarithm of the generating functional is a sum of values of connected Feynman graphs. In Chap. 3, the Wilson renormalization flow is defined, and perturbative renormalizability of ¢4 theory in d :5 4 dimensions is proven using a renormal ization group differential equation. The Feynman graph expansion of Chap. 2 is the explicit solution to this equation, but the analysis of the differential equation leads to a very simple renormalizability proof. It also brings out clearly that the renormalization subtractions really amount to a change of boundary conditions. In Chap. 4, a similar renormalization flow is applied to an infrared problem, that of many-fermion systems. Using the method of overlapping loops, I determine the leading contributions to the renormaliza tion group flow to all orders of perturbation theory. This leading behaviour is then calculated in the simplest cases and its physical implications are dis cussed heuristically. Readers with a little experience in field theory can read Chap. 4 independently of Chaps. 1-3. I would like to thank Horst Knarrer for the suggestion to write this text and for many valuable comments. I also thank Laszl6 Erdos and Pirmin Lemberger for reading carefully through Chaps. 1-3 and for suggesting var- VI Preface ious improvements. Finally, I would like to thank Joel Feldman and Eugene Trubowitz for the collaboration which brought about many of the results about many-fermion systems described in Chap. 4 and for many discussions, Christian Lang and Erhard Seiler for teaching me a good part of what I know about quantum field theory, and Volker Bach, Georg Keller, Christoph Kopper, Walter Metzner, Edwin Langmann, and Christian Wieczerkowski for discussions. A saying attributed to Einstein goes 'Everything should be made as simple as possible, but not simpler.' I have made the proofs as clear and concise as I could without oversimplifying matters or discarding important details. Certainly, not everything here is as simple as it could possibly be, but I hope that it is at least readable. Zurich, September 1998 Manfred Salmhofer Table of Contents 1. Field Theory ............................................. 1 1.1 A Motivation for Path Integrals. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Gaussian Integrals and Random Variables. . . . .. . . . . .. . . . . . 6 1.2.1 Preliminaries.................................... 6 1.2.2 Gaussian Integrals in Finitely Many Variables. . . . . . . . 7 1.2.3 The Covariance Splitting Formula . . . . . . . . . . . . . . . . .. 10 1.3 Field Theory on a Lattice ............................... 11 1.3.1 Discretization.................................... 12 1.3.2 The Partition Function and Correlations ............ 15 1.3.3 The Ising Model ................................. 17 1.4 Free Fields ............................................ 19 1.5 Properties of the Free Covariance. . . . . . . . . . . . . . . . . . . . . . . .. 21 1.6 Problems With and Without Cutoffs. . . . . . . . . . . . . . . . . . . . .. 23 2. Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27 2.1 Integration by Parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27 2.2 Wick Ordering. . . . . . . . .. . . . . . . .. . . . . . . . . . . .. . . . . . . . . . .. 28 2.2.1 Definition and Main Properties. . . . . . . . . . . . . . . . . . . .. 28 2.2.2 Further Results. . . .. . . . . . . .. . . . . . . . . .. . . . . . . . . . .. 30 2.3 Evaluation of Gaussian Integrals ......................... 33 2.3.1 Labelled Feynman Graphs. . . . . . . . . . . . . . . . . . . . . . . .. 33 2.3.2 Symmetry Factors and Topological Feynman Graphs.. 38 2.3.3 Motivations for Taking the Logarithm. . . . . . . . . . . . . .. 39 2.4 Polymer Systems.. . . .. . . . . .. . . . . . . .. . . . . .. . . . . .. . . .. . .. 41 2.4.1 Preparation: Graphs and Partitions.. . . .. . . .. . . . . . .. 42 2.4.2 The Logarithm of the Polymer Partition Function . . .. 44 2.5 The Effective Action and Connected Graphs. . . . .. . . .. . . . .. 47 2.5.1 Definition and Semigroup Property. . .. . . . . .. . . .. . .. 47 2.5.2 Derivation of the Graphical Representation. . . . . . . . .. 49 2.5.3 Result and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 55 2.6 Graphical Representations: Conclusions. . . . .. . . . . . . . . .. . .. 57 VIII Table of Contents 3. The Renormalization Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 63 3.1 A Cutoff in Momentum Space. .... .. .. . . .. .. . . .. .. .. .. . .. 64 3.2 The Semigroup Structure of Renormalization .............. 65 3.3 The Renormalization Group Equation. . . . . . . . . . . . . . . . . . . .. 68 3.3.1 The Functional Form. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 68 3.3.2 The Component Form. . ... . . ... . .. .... . . .... . . . .. 69 3.4 The Structure of the RG equation . . . . . . . . . . . . . . . . . . . . . . .. 72 3.4.1 The Graphical Representation ..................... 72 3.4.2 The Relation to the Feynman Graph Expansion. . . . .. 74 3.4.3 The Continuum Limit at Fixed Ao. . . . . . . . . . . . . . . . .. 74 3.5 Differential Inequalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 75 3.6 Two Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 78 3.6.1 Boundedness..................................... 78 3.6.2 4>~.............................................. 80 3.6.3 Convergence..................................... 82 3.7 Three Dimensions ...................................... 85 3.7.1 Power Counting for the Truncated Equation. . . . . . . .. 86 3.7.2 Renormalization: A Change of Boundary Conditions.. 88 3.7.3 Renormalized 4>~ ................................. 91 3.8 Four Dimensions ....................................... 99 3.8.1 Counterterms in Second Order. . . . . . . . . . . . . . . . . . . .. 99 3.8.2 Power Counting (Skeleton Flow) ................... 102 3.8.3 The Boundary Conditions for Renormalization ....... 103 3.8.4 Renormalized 4>4 Theory .......................... 105 3.9 The RG Flow in the Ladder Approximation ................ 109 4. The Fermi Surface Problem .............................. 113 4.1 Physical Motivation ..................................... 113 4.2 Many-Fermion Systems on a Lattice ...................... 114 4.2.1 The Hamiltonian ................................. 115 4.2.2 The Grand Canonical Ensemble .................... 118 4.2.3 The Fermi Gas ................................... 119 4.2.4 The Functional Integral Representation ............. 123 4.2.5 RG Flow: Energy Scales ........................... 125 4.2.6 Model Assumptions ............................... 126 4.2.7 The Physical Significance of the Assumptions ........ 128 4.2.8 The Role of the Initial Energy Scale ................ 129 4.3 The Renormalization Group Differential Equation .......... 130 4.3.1 The Effective Action .............................. 130 4.3.2 The RG Equation ................................ 131 4.3.3 The Component RGE in Fourier Space .............. 136 4.4 Power Counting for Skeletons ............................ 137 4.4.1 Bounds for the Infinite-Volume Propagator .......... 137 4.4.2 Sup Norm Estimates .............................. 139 4.4.3 Estimates in L1 Norm ............................ 142 Table of Contents IX 4.5 The Four-Point Function ................................ 145 4.5.1 Motivation ...................................... 146 4.5.2 The Parquet Four-Point Function .................. 147 4.5.3 The One-Loop Volume Bound ...................... 149 4.5.4 The Particle-Particle Flow ........................ 151 4.5.5 The Particle-Hole Flow ........................... 155 4.5.6 The Combined Flow .............................. 157 4.6 Improved Power Counting ............................... 157 4.6.1 Overlapping Loops ............................... 157 4.6.2 Volume Improvement from Overlapping Loops ....... 160 4.6.3 Volume Improvement in the RGE .................. 161 4.6.4 Bounds on the Non-Ladder Skeletons ............... 162 4.6.5 The Derivatives of the Skeleton Selfenergy ........... 165 4.7 Renormalization Subtractions ............................ 167 4.7.1 Motivation; the Counterterm ...................... 167 4.7.2 Full Amputation ................................. 168 4.7.3 Bounds for a Truncation .......................... 170 4.7.4 The Meaning of K ................................ 173 4.8 Conclusion............................................ 175 4.8.1 Summary ........................................ 175 4.8.2 A Fermi Liquid Criterion .......................... 176 4.8.3 How the Curvature Sets a Scale . . . . . . . . . . . . . . . . . . .. 178 A. Appendix to Chapters 1-3 ................................ 181 A.1 A Topology on the Ring of Formal Power Series ............ 181 A.2 Fourier Transformation .................................. 181 A.3 Properties of the Boson Propagator. . . . . . . . . . . . . . . . . . . . . .. 184 A.4 Wick Reordering for Bosons ............................. 185 A.5 The Lower Bound for the Sunset Graph . . . . . . . . . . . . . . . . . .. 189 B. Appendix to Chapter 4 ................................... 191 B.1 Fermionic Fock Space ................................... 191 B.2 Calculus on Grassmann Algebras ......................... 192 B.3 Grassmann Gaussian Integrals ........................... 196 B.4 Gram's Inequality; Bounds for Gaussian Integrals ........... 198 B.5 Grassmann Integrals for Fock Space Traces ................ 201 B.5.1 Delta Functions and Integral Kernels ............... 202 B.5.2 The Formula for the Trace ......................... 204 B.5.3 The Time Continuum Limit ....................... 205 B.5.4 Nambu Formalism ................................ 212 B.5.5 Matsubara Frequencies ............................ 213 B.6 Feynman Graph Expansions ............................. 214 B.7 The Thermodynamic Limit in Perturbation Theory ......... 217 X Table of Contents B.8 Volume Improvement Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 B.8.1 The One-Loop Volume Bound ..................... 220 B.8.2 The Two-Loop Volume Bound ..................... 222 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Index ......................................................... 229

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.