ebook img

Remote Sensing Land Surface Changes: The 1981-2020 Intensive Global Warming PDF

463 Pages·2023·34.177 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Remote Sensing Land Surface Changes: The 1981-2020 Intensive Global Warming

Felix Kogan Remote Sensing Land Surface Changes The 1981-2020 Intensive Global Warming Remote Sensing Land Surface Changes Felix Kogan Remote Sensing Land Surface Changes The 1981-2020 Intensive Global Warming Felix Kogan National Oceanic and Atmospheric Administration Rockville, MD, USA ISBN 978-3-030-96809-0 ISBN 978-3-030-96810-6 (eBook) https://doi.org/10.1007/978-3-030-96810-6 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Contents 1 Why This Book? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Land Changes Due to Global Warming . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Living on Warmer Land . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 The Goals of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Book Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Short Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 Global Warming Impacts on Earth Systems . . . . . . . . . . . . . . . . . . . . 21 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Global Temperature and Anomalies for Climate Studies . . . . . . . . . 25 2.2.1 Development and Accuracy of the Global TA Time Series and UN-Based IPCC Activities . . . . . . . . . . . . . . . . . 26 2.2.2 Land, Ocean, and Global Temperature Anomalies from NOAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3 IPCC Program: Global Warming and Impacts on Earth . . . . . . . . . 44 2.3.1 Global Warming and IPCC-Based Earth/Land Changes . . . 47 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3 The IPCC Reports on Global Warming and Land Changes . . . . . . . 67 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2 Climate Warming and Land Changes from the IPCC Reports . . . . 69 3.2.1 Land Changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.2.3 Land Degradation and Desertification . . . . . . . . . . . . . . . . . 70 3.2.4 Food Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.5 General IPCC Statements and Brief Comments . . . . . . . . . 73 3.2.6 The Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.3 Evaluation of the IPCC Statements . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 v vi Contents 4 NOAA Operational Environmental Satellites for Earth Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2 NOAA Operational Polar-Orbiting Environmental Satellites (POES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2.1 AVHRR Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2.2 AVHRR Data for Vegetation Monitoring . . . . . . . . . . . . . . . 84 4.2.3 Initial Algorithm for Data Collection . . . . . . . . . . . . . . . . . . 85 4.2.4 Normalized Difference Vegetation Index and Brightness Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.2.5 Removing Noise from NDVI and BT . . . . . . . . . . . . . . . . . 91 4.2.6 VIIRS Data for Vegetation Monitoring . . . . . . . . . . . . . . . . 106 4.2.7 Continuity of NOAA/AVHRR, S-NPP/VIIRS, and NOAA-20/VIIRS Data Records . . . . . . . . . . . . . . . . . . 110 4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5 New Remote Sensing Vegetation Health Technology . . . . . . . . . . . . . . 121 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.2 What Is Vegetation Health? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.3 Theoretical Base of Vegetation Health Method . . . . . . . . . . . . . . . . 123 5.3.1 Biophysical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.3.2 Basic Laws for Extracting Weather Component from NDVI and BT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.4 Renewed Vegetation Health Algorithm . . . . . . . . . . . . . . . . . . . . . . 126 5.5 Vegetation Health at Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6 Causes of Climate Warming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.2 Global Warming and Major Earth Changes . . . . . . . . . . . . . . . . . . . 151 6.3 What Is Controlling Global Warming? . . . . . . . . . . . . . . . . . . . . . . 154 6.3.1 Climate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.3.2 CO and Global Warming . . . . . . . . . . . . . . . . . . . . . . . . . . 155 2 6.3.3 CO–TA Match: New Analysis . . . . . . . . . . . . . . . . . . . . . . 159 2 6.4 New Ideas About the Causes of Global Warming . . . . . . . . . . . . . . 163 6.4.1 Warming Due to Ozone Depletion . . . . . . . . . . . . . . . . . . . . 163 6.4.2 Earth Climate and Milankovitch Cycle . . . . . . . . . . . . . . . . 166 6.4.3 Milankovitch-Based Precession Cycle . . . . . . . . . . . . . . . . 168 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Contents vii 7 Land Cover Changes from Intensive Climate Warming . . . . . . . . . . . 181 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.1.1 General Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.1.2 NOAA Satellites, Used for This Analysis . . . . . . . . . . . . . . 182 7.2 Land Cover Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.2.1 Global-Regional Land Cover Temperature (SMT) . . . . . . . 185 7.3 Land Cover Greenness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 7.3.1 World and Hemispheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 7.3.2 China, the USA, and India . . . . . . . . . . . . . . . . . . . . . . . . . . 203 7.3.3 Brazil, Indonesia, Russia . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 7.3.4 Argentina, Ukraine, France, Canada . . . . . . . . . . . . . . . . . . 205 7.3.5 Other Countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 8 Global Warming Crop Yield and Food Security . . . . . . . . . . . . . . . . . 217 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 8.2 Modeling Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 8.2.1 Yield Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 8.2.2 Vegetation Health Indices . . . . . . . . . . . . . . . . . . . . . . . . . . 220 8.2.3 Yield-Vegetation Health Models . . . . . . . . . . . . . . . . . . . . . 221 8.3 Yield-Vegetation Health Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 8.3.1 Global Grain and Food Security . . . . . . . . . . . . . . . . . . . . . 223 8.3.2 Corn in China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 8.3.3 Winter Wheat, Corn, and Sorghum in the USA . . . . . . . . . . 227 8.3.4 Winter Wheat in Ukraine . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 8.3.5 Corn in Argentina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 8.3.6 Wheat in Australia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 8.3.7 Rice in Bangladesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 8.3.8 Cereals in Russia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 8.3.9 Spring Wheat in Kazakhstan . . . . . . . . . . . . . . . . . . . . . . . . 254 8.3.10 Corn in Zimbabwe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 8.3.11 Other Countries and Crops. . . . . . . . . . . . . . . . . . . . . . . . . . 262 8.3.12 VH-crop Modeling for Food Security: Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 8.4 Short Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 9 Remote Sensing Malaria During Global Warming . . . . . . . . . . . . . . . 277 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 9.2 Modeling Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 9.2.1 Malaria’s Multiyear Time Series . . . . . . . . . . . . . . . . . . . . . 280 9.2.2 VHI Applied to Malaria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 viii Contents 9.3 Malaria-VH Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 9.3.1 Southeast Asia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 9.3.2 Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 9.3.3 South America . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 10 Malaria Performance Trend During 1981–2020 Global Warming . . . 333 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 10.2 Earth Climate Warming and Consequences . . . . . . . . . . . . . . . . . . 335 10.3 Strong Global Warming During 2015–2018 . . . . . . . . . . . . . . . . . 337 10.4 Global and Continental Malaria Activities, Assessed from 1981 to 2018 Satellite-Based Moisture-Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 10.4.1 Malaria Activities Assessed Form Vegetation Greenness and Temperature . . . . . . . . . . . . . . . . . . . . . . 340 10.4.2 Vegetation Health Indices as the Indicators of Malaria activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 10.4.3 High Malaria (HM) and Low Malaria (LM), Assessed from Vegetation Health Indices . . . . . . . . . . . . 345 10.4.4 Percent Global Malaria Area with HM and LM from the 1981–2018 Moisture-Thermal Index (VHI) . . 345 10.4.5 Percent Global Malaria Area with HM and LM from the 1981–2018 Moisture (VCI) and Thermal (TCI) Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 10.4.6 Percent Continental (South America, Africa and Southeast Asia) Malaria Area with HM and LM from 1981 to 2018 Thermal (TCI) and Moisture (VCI) Conditions During Climate Warming . . . . . . . . . . . . . . . 348 10.5 Percent Malaria Endemic Area with HM and LM (Assessed from 1981 to 2019 Moisture (VCI) and Thermal (TCI) Vegetation Condition) in the Most Malaria-Affected Countries During 1981–2019 Global Warming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 10.5.1 Brazil and Colombia (South America (SA)) . . . . . . . . . 354 10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 11 Remote Sensing Drought Watch and Food Security . . . . . . . . . . . . . . 373 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 11.2 Drought as Natural Disaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 11.3 What Is Drought? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 11.3.1 Drought Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 11.3.2 Measuring Drought . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 11.3.3 Drought Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 Contents ix 11.4 Drought Detection and Monitoring Methods . . . . . . . . . . . . . . . . . 379 11.4.1 Meteorological Methods . . . . . . . . . . . . . . . . . . . . . . . . . 379 11.4.2 Soil Moisture Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 381 11.4.3 Satellite-Derived Methods . . . . . . . . . . . . . . . . . . . . . . . 382 11.5 Vegetation Health-Based Droughts: Past to Present . . . . . . . . . . . 390 11.6 Droughts at 0.5 and 1 km2 Resolution from NOAA/VIIRS . . . . . . 405 11.7 Devastating Droughts in 2017 and 2018 . . . . . . . . . . . . . . . . . . . . 412 11.8 Drought, Food Insecurity, and Hunger in Africa . . . . . . . . . . . . . . 414 11.9 Unusual 2021 Droughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 11.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 12 Has Drought Intensified During 1981–2021 Global Warming? . . . . . 425 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 12.2 Global Warming and Droughts . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 12.3 How to Measure Drought from NOAA/POES? . . . . . . . . . . . . . . . 429 12.4 41-Year (1981–2021) Drought Dynamics . . . . . . . . . . . . . . . . . . . 430 12.4.1 Thermal Vegetations Stress and Drought Dynamics During 1981–2021 Global Warming . . . . . . . . . . . . . . . 431 12.4.2 Dynamics of Moisture Vegetation Stress During 1981–2021 Global Warming . . . . . . . . . . . . . . . . . . . . . . 444 12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 Chapter 1 Why This Book? 1.1 Land Changes Due to Global Warming This Book is studying numerical land changes due to an intensive global warming. The recent climate warming has affected the entire earth. Why the major focus of the Book is on land? Land is the only earth system supporting people’s living. Land area is not big, occupying 148.3 million km2 or 29% of the total earth surface (510.1 million km2). Although the land is 2.4 times smaller than ocean, nearly 80% of Earth’s species live on land and 5% are living in land’s freshwater (IGBP 2020). The rest 15% species are remaining in the ocean. The most important land’s goals are supporting living 7.8 billion people. Considering the size of land (excluding two Poles) and assuming uniform population distribution, each land’s 1 km2 contains 50 people. Meanwhile, people are distributed not uniformly. Nearly two-thirds of the world’s population lives in Asia, with nearly 2.7 billion in the two countries, China and India. Supporting currently the living of 7.8 billion earth population, and having rela- tively limited land’s resources, any deviations of land conditions from the estab- lished over many years might produce negative impacts on land resources and population living. Such strong deviations of the conditions have been currently cre- ated by the global warming, which is affecting the entire earth and especially land. Earth climate has been warming up since the mid-eighteenth century (IPCC 2007, 2014, 2018a, b, 2019a, b, c, d, e, f, g, h). This process has intensified, from the late- 1970s, and by the turn of the twentieth century, global temperature anomaly (TA) increased by nearly 0.9 °C (over the preindustrial time (1850–1900) (IPCC 2007, 2014, 2019b). Such a strong increase in global temperature anomaly (TA) has been leading to quite unusual changes in Earth and specifically land environmental, economic, and social events (IPCC 2014, 2019d). © The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 1 F. Kogan, Remote Sensing Land Surface Changes, https://doi.org/10.1007/978-3-030-96810-6_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.