ebook img

Remarks on the zero-divisor graph of a commutative ring PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Remarks on the zero-divisor graph of a commutative ring

Advances in 1 Applied Mathematics AdvancesinAppliedMathematics00(2015)1–3 Remarks on the zero-divisor graph of a commutative ring 5 1 0 TianYanzhao*,WeiQijiao 2 (SchoolofMathematics,ChengduUniversityofInformationTechnology,Chengdu610225,China) b e F 2 ] Abstract T N In1988,I.BeckshowedthatthechromaticnumberofG(Z )isequaltoitscliquenumber.In2004,S.AkbariandA.Mohammadian n proved that the edge chromatic number of G(Z ) is equal to its maximum degree,in 2008, J.Skowronek-kaziow give formulas . n h calculatingthecliquenumberandthemaximumdegreeofG(Z ),buthehaveaerroraboutcliquenumberofG(Z ),weconsider n n at the zero-divisor graphG(Zn) of the ring Zn.we give formulas calculating the clique number ofG(Zn).Wepresent a constructed m methodtocalculatethecliquenumber. [ Keywords: Digraph,Grouptheory,Zero-divisorgraph,ChineseRemainderTheorem 2 v 1. 4 0 Theconceptofzero-divisorgraphsofacommutativeringswasintroducedbyI.Beckin1988[1],In1999[2],Anderson 7 and Livingston introduced and studied the Zero-divisor graph whose vertices are the non-zero zero-divisors. This 5 0 graphturnsouttobestexhibitthepropertiesofthesetofzero-divisorsofacommutativering.Thezero-divisorgraph . helps us to study the algebraic properties of rings using graph theoretical tools. We can translate some algebraic 1 0 propertiesof a ring to graph theory language and then the geometric propertiesof graphs help us to explore some 5 interestingresultsinthealgebraicstructuresofrings. Thezero-divisorgraphofacommutativeringhasbeenstudied 1 extensivelybyAnderson,Frazier,Lauve,Levy,LivingstonandShapiro,see[2,3,4,10]. Thezero-divisorgraphcon- : v cepthasrecentlybeenextendedtonon-commutativerings,see[5]. AcliqueinagraphG,isacompletesubgraphof i G,theorderofthelargestcliqueinagraphGisitscliquenumber[6],AsubgraphK withmverticesiscalledaclique X m ofsizemifanytwodistinctverticesinitareadjacent.Theminimumnumberofcolorsthatcanbeusedtocolorthe r edgesofG is called the edge chromaticnumberand is denotedby χ (G).ThemaximumdegreeofG is denotedby a 1 ∆(G).Thevertexchromaticnumberχ(G)ofagraphG,istheminimumk forwhichG hasa k−vertex coloring.The zero-divisorgraphoftheringsZ ,denotedbyG(Z ),isagraphwithvertexsetinZ −{0},inwhichtwoverticesxandy n n n areadjacentifandonlyifx,yandx·y≡0(modn). In 1988 ,I.Beck showed that the chromatic number of G(Z ) is equal to its clique number.In 2004 S.Akbari n and A.Mohammadianprovedthat the edge chromatic number ofG(Z ) is equal to its maximum degree[7],in 2008 n [8]J.Skowronek-kaziowgiveformulascalculatingthecliquenumberandthemaximumdegreeofG(Z ),buthehave n aerroraboutcliquenumberofG(Z ). n 1*Correspondingauthor. E-mailaddresses:[email protected],[email protected], ProjectsupportedbytheNationalNaturalScienceFoundationofChina(GrantNo.11471055) 1 TianYanzhao/AdvancesinAppliedMathematics00(2015)1–3 2 Forexample,n=420=22·3·5·7,G(Z )={30,42,70,210},thecliquenumberis4.n=108=22·33,G(Z )= 420 108 {6,18,36,54,72,90}.thecliquenumberis6.InthispaperwegiveformulascalculatingthecliquenumberofG(Z ). n let n = pα1pα2···pαs be the prime power factorization of n,where p < p ··· < p are distinct primes and 1 2 s 1 2 s α ≥1,s≥1. i 2. Results Inthissection,weshowformulascalculatingthecliquenumberofG(Z ).atthesametime,wegivesomeexamples. n 1. Vizing’sTheorem[6,p281]ForeverynonemptygraphG,theneitherχ (G)=∆(G)orχ (G)=∆(G)+1. 1 1 2. Theorem1.ThemaximaldegreeinG(Z )hasthevertexn/p andthemaximumdegreeisequalton/p −1. n 1 1 Proof:Thisisprovedin[8]. (cid:3) 3. Theorem 2. If n is square-free,then the clique number of the graph G(Z ) is s.if αare even numbers,for all n i 1≤i≤ s,thenthecliquenumberis pα1/2pα2/2···pαs/2−1,otherwise,thecliquenumberis 1 2 s pδ1/2···pδr/2qβ1−1/2···qβt−1/2+t−1, 1 r 1 t whereδ iseven,i=1,...,r,β isodd,i=1,...,t. i i Proof:Weconsiderthethreecase. 1.Ifnissquare-free,letn= p p ···p ,wherep aredistinctprimes,1≤i≤ s.weconsiderthesetS ={n, n ,..., n}, 1 2 s i ps ps−1 p1 theproductofeverypairelementsofthesetisamultipleofn.i.e.theelementsofSisintheverticessetofG(Z ),there n arenomoreelementsinG(Z ),thereforethecliquenumberinthiscaseisequaltos. n 2.Ifallα areeven,1≤i≤ s,thentheelementm= pα1/2pα2/2···pαs/2andelement2m,3m,4m,...,(m−1)mform i 1 2 s acliquenumberofG(Z ).theelementtisthesmallestnumbersuchthatthemultiple(m−1)mispossiblythegreatest n numberbelongingtoZ andthecliquenumberinthiscaseisequaltom−1. n 3.Ifα areevenandoddnumbers,letn= pδ1/2···pδr/2qβ1−1/2···qβj−1/2·q ···q ,δ iseven(i=1,...,r),β isodd( i 1 r 1 j 1 j i i i= 1,..., j),p < p < ... < p ,q < q < ... < q ,Pr δ +Pj β = Ps α. Wepresentaconstructedmethodto 1 2 r 1 2 j i=1 i i=1 i i=1 i calculatethecliquenumber. If j=1,n= pδ1/2···pδr/2qβ1−1·q ,letk = pδ1/2···pδr/2q(β1−1)/2,weconsiderthesetA={k2,q k,2q k,3q k,...,q (k− 1 r 1 1 1 r 1 1 1 1 1 1)k},theproductofeverypairelementsoftheset Aisamultipleofn.i.e. theelementsof Aareintheverticessetof G(Z ),theelementkisthesmallestnumbersuchthatthemultiple(k−1)kispossiblythegreatestnumberbelonging n toZ andthecliquenumberinthiscaseisequaltok+1−1=k. n If j=2,n= pδ1/2···pδr/2qβ1−1qβ2−1q q . 1 r 1 2 1 2 letk= pδ1/2···pδr/2q(β1−1)/2q(β2−1)/2.weconsiderthesetB 1 r 1 2 B={q k,q k,q q k,2q q k,3q q k,...,q q (k−1)k},theproductofeverypairelementsofthesetBisamultiple 1 2 1 2 1 2 1 2 1 2 ofn.i.e. theelementsof BisintheverticessetofG(Z ),theelementk isthesmallestnumbersuchthatthemultiple n q q (k−1)kispossiblythegreatestnumberbelongingtoZ andthecliquenumberinthiscaseisequaltok+2−1=k+1. 1 2 n ........................... . If j=t,letc=q q ···q,n= pδ1/2···pδr/2qβ1−1···qβt−1c. 1 2 t 1 r 1 t letk= pδ1/2···pδr/2q(β1−1)/2···q(βt−1)/2.weconsiderthesetC 1 r 1 t C = {ck/q ,ck/q ,...,ck/q,ck,2ck,3ck,...,c(k − 1)k}, the product of every pair elements of the set C is a 1 2 t multipleofn.i.e. theelementsofC isintheverticessetofG(Z ),theelementk isthesmallestnumbersuchthatthe n multiplec(k−1)kispossiblythegreatestnumberbelongingtoZ andthecliquenumberinthiscaseisk+t−1. of n course,thenumber j∈ N. weconcludethatthecliquenumberisequalto pδ1/2···pδr/2q(β1−1)/2···q(βt−1)/2+t−1 1 r 1 t theproofiscomplete. (cid:3) 2 TianYanzhao/AdvancesinAppliedMathematics00(2015)1–3 3 3. Example (1)Ifn = 60 = 22 ·3·5,bythe theorem, the cliquenumberofG(Z ) is equalto 3. the verticesset ofG(Z )is 60 60 G(Z )={12,20,30}. 60 (2)Ifn=25·53·72,then,bythetheorem,thecliquenumberofG(Z )isequalto141. 196000 (3)Ifn=33·52·73,then,bythetheorem,thecliquenumberofG(Z )isequalto106. 231525 4. Acknowledgments TheauthorsareindebtedtotheNationalNaturalScienceFoundationofChinaforsupport.Alsotheauthorsthank therefereeforher/hisvaluablecomments. References [1] I.Beck,Coloringofcommutativerings,J,Algebra116(1988)208-226. [2] D.F.Anderson,P.S.Livingston,TheZero-divisorgraphofacommutativering.J.Algebra217(1999)434-447. [3] D.F.Anderson,A.Frazier,A.Lauve,P.S.Livingston,Thezero-divisorgraphofacommutativering,II,in:LectureNotesinPureandAppl. Math.,vol.220,MarcelDekker,NewYork,2001,pp.61-72. [4] D.F.Anderson,R.Levy,J.Shapiro,Zero-divisorgraphs,vonNeumannregularrings,andBooleanalgebras,J.PureAppl.Algebra,submitted forpublication. [5] S.P.Redmond,Thezero-divisorgraphofanon-commutativering,Internat.J.CommutativeRings1(4)(2002)203-211. [6] GaryChartrand,PingZhang,IntroductiontoGraphTheory,PostsandTelecomPress,BeiJing,2006. [7] S.Akbari,A.Mohammadian,Onthezero-divisorgraphofacommutativering,J.Algebra274(2004)847-855 [8] JoannaSkowronek-Kaziow,somedigraphsarisingfromnumbertheoryandremarksonthezero-divisorgraphofringZn,InformationProcess- ingLetters108(2008)165-169. [9] H.P.Yap,someTopicsinGraphTheory,in:LondonMath.Soc.LectureNoteSer.,vol.108,1986. [10] P.S.Livingston,StructureinZero-divisorGraphsofCommutativeRing,MastersThesis,TheUniversityofTennessee,Knoxville,TN,December 1997. 3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.