ebook img

Reliability of NH3 as the temperature probe of cold cloud cores PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reliability of NH3 as the temperature probe of cold cloud cores

Astronomy&Astrophysicsmanuscriptno.juvela˙nh3 (cid:13)c ESO2012 January17,2012 Reliability of NH as the temperature probe of cold cloud cores 3 M.Juvela1,J.Harju2,1,N.Ysard1,T.Lunttila1, 1 DepartmentofPhysics,P.O.Box64,FI-00014,UniversityofHelsinki,Finland,mika.juvela@helsinki.fi 2 FinnishCentreforAstronomywithESO(FINCA) ReceivedSeptember15,1996;acceptedMarch16,1997 ABSTRACT 2 Context. Thetemperatureisacentralparameteraffectingthechemicalandphysicalpropertiesofdensecoresofinterstellarclouds 1 andtheirpotentialevolutiontowardsstarformation.Thechemistryandthedustpropertiesaretemperaturedependentand,therefore, 0 interpretationofanyobservationrequirestheknowledgeofthetemperatureanditsvariations.Directmeasurementofthegaskinetic 2 temperatureispossiblewithmolecularlinespectroscopy,theammoniamolecule,NH ,beingthemostcommonlyusedtracer. 3 n Aims. Wewanttodeterminetheaccuracyofthetemperatureestimatesderivedfromammoniaspectra.Thenormalinterpretationof a NH observationsassumesthatallthehyperfinelinecomponentsaretracingthesamevolumeofgas.However,inthecaseofstrong 3 J temperaturegradientstheymaybesensitivetodifferentlayersandthiscouldcauseerrorsintheopticaldepthandgastemperature 5 estimates. 1 Methods. Weexamineaseriesofsphericallysymmetriccloudmodels,1.0and0.5M⊙ Bonnor-Ebertspheres,withdifferentradial temperatureprofiles.WecalculatesyntheticNH3 spectraandcomparethederivedcolumndensitiesandtemperaturestotheactual ] valuesinthemodels. A Results. Forhighsignal-to-noiseobservations,theestimatedgaskinetictemperaturesarewithin∼0.3Koftherealmassaveraged G temperatureandthecolumndensitiesarecorrecttowithin∼10%.WhentheS/Nratioofthe(2,2)spectrumdecreasesbelow10,the temperatureerrorsareoftheorderof1Kbutwithoutasignificantbias.Onlywhenthedensityofthemodelsisincreasedbyafactor h. ofafew,theresultsbegintoshowsignificantbiasbecauseofthesaturationofthe(1,1)maingroup. p Conclusions. Theammoniaspectraarefoundtobeareliabletraceroftherealmassaveragedgastemperature.Becausetheradial - temperatureprofilesofthecoresarenotwellconstrained,thecentraltemperaturecouldstillbedifferentfromthisvalue.Ifthecores o areopticallyverythick,therearenolongerguaranteesoftheaccuracyoftheestimates. r t Keywords. ISM:clouds–ISM:molecules–Radiolines:ISM–Stars:formation–radiativetransfer s a [ 1. Introduction haveahyperfinestructure.Forexamplethe(1,1)spectrumcon- 1 v tains18componentsfromwhichatleastfiveseparategroupsof 2 The dense molecular cloud cores are of particular interest be- linesareusuallydiscernible.Theintensityratioofthehyperfine 6 cause their collapse can lead to the formation of new stars. To componentsprovidesaconvenienttooltoestimatethelineopti- 0 understandthestar formationprocess,one needsto understand caldepths.Because ofthese properties,ammoniais a common 3 thephysicalandchemicalpropertiesofthecores.Thetempera- tool for gas temperature measurements, especially in the case 1. tureofthecores,especiallyasafunctionofposition,isdifficult of dense cores (Ho&Townes 1983). The high critical density 0 to measure and yet it affects everything from core stability to (∼2·103cm−3forthe(1,1)transitionascalculatedfromthera- 2 chemistryanddustevolution. tio of the spontaneousand collisional de-excitationrates at the 1 Dustandgasbecomethermallycoupledonlyathighdensi- temperature of 15K) guaranteesthat one is measuring temper- : ties,n(H )∼105cm−3andabove(Goldsmith2001).Becausethe ature of dense gas. On the other hand, NH is resilient against v 2 3 continuum surface brightness is strongly affected by the warm depletionandtheabundanceisobservedtodroponlyinthevery i X outercloudlayers,observationsofthedustemissionarenotideal densestandcoldestcores(Bergin&Tafalla2007). r todeterminethegastemperatureatthecentreofthedensecores. The analysis of NH3 is based on the assumption that the a Thewidthsofmolecularlinescansometimesbeusedtoderive (J,K) transitions and their different hyperfine components are stringent limits on the gas temperature (e.g., Harjuetal. 2008) alltracingthesamephysicalregion.Becauseofthedifferentop- butthevalueofthismethodislimitedbythepresenceofturbu- tical depths, the weaker hyperfine components could be more lentvelocitycomponent. sensitivetodeeperlayersinthecloud.Theeffectshouldbecome In observationsofmostmolecules,it isdifficultto separate noticeable if the main lines are moderately optically thick and the effects of density, opticaldepth, and temperature.The situ- thesourcehasstrongtemperaturegradients. ationisdifferentforammonia,NH ,whoserotationalenergyis Thetemperaturestructureofquiescentcorescan,in princi- 3 characterisedbythequantumnumbers(J,K).Becausethedipole ple, be calculated from the balance of the various heating and transitions between the different K ladders are forbidden,their cooling mechanisms (e.g. Goldsmith 2001; Gallietal. 2002). relativepopulationsdependonlyoncollisionsandthusmeasure The gas within the cores is heated by the cosmic rays and the thegaskinetictemperature.Eachrotationalstate(J,K)isfurther external stellar radiation field and it is cooled down by the dividedtoinversiondoublets.Theinversiontransitions(1,1)and line radiation from a number of atomic and molecular species. (2,2) are at 23.7GHz and 23.72GHz respectively,and are eas- Depending on the temperature difference between the gas and ily observable from the ground. The inversion transitions also the dust, the gas-dust collisions can result in either heating or 1 M.Juvelaetal.:ReliabilityofNH asthetemperatureprobeofcoldcloudcores 3 coolingofthegas.Juvela&Ysard(2011)discussedtherangeof Table1.Themaincoremodels. possibletemperatureprofilesindensecores,emphasisingtheun- certaintiesassociatedwithmanyofthecontributingfactors(e.g., Model Modification T rangesofthe0.5 kin theexternalradiationfield,thegas-dustcoupling,andtheabun- and1.0M⊙models(K) dancesofthespeciesresponsibleforthemaincoolinglines).In Default – 5.3-9.3,4.6-8.4 thispaperweusethemodelsofJuvela&Ysard(2011)toexam- χ χ=(0.1−1.0) χdefault 5.3-11.0,4.8-11.0 Λ Λ =(0.3-1.0) Λdefault 6.4-10.0,5.3-8.5 ine the reliability of the ammonia temperature estimates in the g,d g,d g,d presenceofradialtemperaturevariations. σv σv=(0.1-1.0) σdvefault 5.3-10.9,4.8-11.4 v 0-1.0kms−1 5.3-9.1,4.8-8.3 The content of the paper is the following. In Sect. 2 we radial PEH includeΓ(PEH)for 9.2-14.7,9.2-19.1 present the methods concerning the core models, the calcula- ζ=3·1017s−1 tionofsyntheticammoniaspectra,andthederivationoftemper- atureandcolumndensityestimates.Theresultsarepresentedin Sect. 3, where we compare the derived estimates to the corre- spondingactualvaluesinthemodels,inparticularstudyingthe effects of observational noise and increased column densities. wherethemodelcloudisassumedtobeilluminatedbyanunat- ThefinalconclusionsarepresentedinSect.5. tenuatedinterstellarradiationfield(Mathisetal. 1983).Forthe detailsofthecalculationsoftheT profiles,seeJuvela&Ysard kin 2. Methods (2011). Inadditiontotheabovedescribedmodels,weconsidercases 2.1.Coremodels wherethekinetictemperaturesarethesamebuttheturbulentline We use the cloud models discussed by Juvela&Ysard (2011). width is decreased by a factor of ten in the NH3 calculations. These are 0.5M⊙ and 1.0M⊙ Bonnor-Ebert spheres (ξ=6.5, In particular, in the central part of the σV-model the linewidth T =10K) for which the gastemperatureswere calculated un- then becomes practically thermal. We use the Juvela&Ysard kin derdifferenthypotheses.Thisresultedinasetofradialtemper- (2011) results only as examples of the possible shapes of the atureprofileswithvaryingshapes,thetemperaturebeingofthe temperature profiles and the purpose of the present paper is to orderof10K.Whilethedusttemperaturedecreasesinwardsin probetheireffectontheanalysisofammoniaspectraatageneral starlesscores,thesituationcanbedifferentforthegastempera- level. turebecauseofthe efficientmolecularline coolingin the outer part.Inthemodels,thegastemperatureprofilesweremostlyin- 2.2.Syntheticspectra creasingtowardsthecentre.Whenthephotoelectricheatingwas included,thesituationisreversedandthesurfacetemperatureis Foreachmodel,syntheticpara-NH (1,1)and(2,2)spectrawere raisedcloseto20K. 3 obtained with the help of radiative transfer calculations. The ThecalculationsfollowGoldsmith(2001)apartfromthefact non-LTEradiativetransferproblemissolvedwithaMonteCarlo that the cooling rates due to line emission are obtained with a program (Juvela 1997). The the model clouds are divided into Monte Carlo radiative transfer program. The cooling rates are 100shells.Togetbetterresolutionintheouterregionswherethe calculated directly for 12CO, 13CO, C18O, C, CS, and o-H O. 2 excitationconditionscanchangemorerapidly,thethicknessof The rates of the last two species are multiplied by 10.0 and the shellswas decreasedtowardsthe surface.Theradiusof the 2.0, respectively, to take into account the contribution of other innermost sphere and the thickness of the outermost shell are, species. We examine the following cases without the photo- respectively,∼6%and0.7%oftheradiusofthemodelcloud. electric heating: the default model (‘def’), the low abundance model (χ), the weak gas-dust coupling model (Λ ), the small Theammoniaspectraarecalculatedfollowingtheprescrip- gd velocity dispersion model (σ ), and the large velocity gradient tion presented in Ketoetal. (2004). The non-LTE populations v model (v). The names refer to the temperature calculations in of the (J,K)states of para-NH3 are obtainedfromthe radiative Juvela&Ysard(2011). transfer calculationswhere,within each state, an LTE distribu- The def-model was obtained assuming σ =1.0kms−1 line tion is assumed between the hyperfine levels (i.e., distribution v according to the statistical weights of the transitions). In the widths (Doppler width) and constant abundances in the calcu- radiative transfer calculations, we take into account the hyper- lation of the cooling lines, no large scale velocity field, and a fine components of the (1,1) and (2,2) lines. These consist of coupling between the gas and dust temperatures that followed 18and21components,respectively.Inthe finalsynthetic(1,1) that presented in Goldsmith (2001). In the σ -model, the tur- v bulent linewidth changes as a step function from 1.0kms−1 in and (2,2) spectra, many of these components are blended to- the outer part, outside the half radius, to 0.1kms−1 within the gether. The molecular parameters for the (J,K) lines are from the Lamda database (Scho¨ieretal. 2005) and the frequencies innercore.Thev-modelistheonlyonewithalargescaleveloc- and relative intensities of the hyperfine lines were taken from ityfield.Ithasradialinfallvelocitiesthatincreaselinearlyfrom 0kms−1 atthe surfaceto 1.0kms−1 inthecentre.Thenameof Kukolich(1967). thelowabundancemodel(χ)referstothecalculationsofthegas Thesynthetic spectraare calculated fora pencilbeam (i.e., kinetictemperaturewheretheabundanceofthecoolingspecies forasingleline-of-sightthroughthecentreofthecore)andav- was assumed to be lower at the centre of the core. This was eragedoveraGaussianbeamwiththeFWHMequaltothecore implemented as a step function with a factor of ten difference radius.Becausetheexcitationofthemoleculesvariesalongthe between the inner and outer parts. However, in the modelling lineofsightandthehyperfinecomponentshavedifferentoptical oftheNH spectra,thefractionalabundanceofpara-NH isal- depths,theobservedintensityratiosbetweenhyperfinecompo- 3 3 ways kept at a constant value of 10−8 (e.g. Hotzeletal. 2001; nentscan varydependingon the opticaldepthand temperature Tafallaetal. 2004). This appliesalso to the χ-model.The pho- structureofthemodel.Figure1showsexamplesofthesimulated toelectric heating is included only in one model (model PEH) spectra. 2 M.Juvelaetal.:ReliabilityofNH asthetemperatureprobeofcoldcloudcores 3 6 a Def (σ=0.1) b σV(0.1-1.0) veryweak andburiedin the noise. In the presentpaperwe use themethodbtodotheanalysis. 4 The rotational temperature, T , is defined with the 12 ()K 2 Boltzmannequation Ta 0 N(2,2) 5 = e−41.5/T12 . N(1,1) 3 −2 5 c v, (σ=0.1) d v, (σ=1.0) The kinetic temperature, Tkin, is estimated using the three 4 level approximation (including the levels (J,K)=(1,1), (2,1) 3 and (2,2)) as outlined by Walmsley&Ungerechts (1983). The ()TKa 012 tceimenptserCat2u2r→e21d/eCp2e2n→d1e1ncweaosfetshtiemraatteido aodfotphteincgoltlhiesiocnoaelfficcoieeffints- −1 of Danbyetal. (1988). The method is the same as used in −2 Harjuetal. (1993). The resulting relationship between T and 12 −20 −10 0 10 20 −20 −10 0 10 20 T isveryclosetothatgivenintheAppendixBofTafallaetal. kin v(km/s) v(km/s) (2004).Incoldgas,thesumofthecolumndensitiesofthe(1,1) Fig.1. Examples of simulated ammonia spectra. Each frame and (2,2) levels is almost equal to the total column density of shows the (1,1) (the upper line) and the (2,2) spectral profiles. para-NH3 as the populationsof the higher rotational levels are Fortheplotting,thelatterhavebeenscaledbyafactorof3and negligible.Wecalculatethesecolumndensityestimatesfromthe shifted by -2K. The text in the upper right hand corner indi- syntheticobservationsandcomparewiththecorrespondingtrue cates the model in question and, in parentheses, the turbulent valuesinthemodelclouds. linewidthusedinthecalculationoftheNH spectra. 3 3. Results 2.3.Analysisofthespectra 3.1.Thebasicmodels To derive estimates of the column densities and gas kinetic Thederivedpara-NH columndensitiesandthegaskinetictem- 3 temperatures,wesubjectthesyntheticNH3(1,1)andNH3(2,2) peratures were compared to the correspondingtrue values that spectra to standard analysis as described in Ho&Townes were calculated as the mass averaged quantities in the model (1983), Walmsley&Ungerechts (1983), and Ungerechtsetal. clouds, averaged over the same beam as what was used in the (1986).ThehyperfinestructureoftheNH3(1,1)lineisfittedus- calculationofthesyntheticammoniaspectra. ing a χ2 routine assuming a gaussian velocity distribution and The main results are presented in Figs. 2– 4. The profiles that the different hyperfine states are populated according to ofthekinetictemperatureT areshownassolidblackcurves. kin LTE. The fit results are used to calculate the optical thickness Theseareacriticalinputparameterforthesimulationoftheam- profile τ(v). The peak value τpeak, and the brightness tempera- moniaspectra.Withoutthephotoelectricheating,Tkin increases ture in the corresponding channel (usually coincident with the towardsthe cloudcentre.The centraltemperatureis furtherin- intensitymaximumTB,peak)aresubstitutedintheantennaequa- creasedwhen,withinonehalfofthecloudradius,theabundance tion to derive the excitation temperature, Tex, of the transition. of the cooling species is decreased (model χ) or the turbulent Theintegratedopticalthickness, τ(v)dv,wherevistheradial linewidth is decreased. In model Λ , the gas-dust coupling1 g,d velocity,andT givethecolumnRdensityintheuppertransition is weakened in the inner core, leading to a small decrease in ex level,N (1,1),fromtheformula the temperature because T > T . We do not claim that all u dust gas thesetemperatureprofilesarelikelytobefoundinstarlesscores. 8π 1 N (1,1) = F(T ,T ) τ(v)dv, However,forthepresentcasethemostimportantfactisthatthey u λ311 Aul 11 ex Z probea wide rangeof Tkin profilesthatpotentiallycouldresult inabiasintheT estimates. kin where Aul is the Einstein coefficient for spontaneousemission, Figure 2 shows the Tkin estimates for the 1M⊙ cloud. The λ11 = c/ν11 is the wavelengthof the transition,T11 = hν11/kB, horizontal thin and thick lines indicate the true mass averaged andthefunctionF(T0,T)isdefinedby temperaturesforasingleline-of-sightthroughthecentreofthe modelcloud(thinline) orweightedwith a gaussianbeamwith 1 F(T ,T)≡ . a FWHM equal to cloud radius. The dashed lines are corre- 0 eT0/T −1 spondinglytheT estimatesderivedfromtheNH spectraob- kin 3 served with a pencil beam or the larger gaussian beam. In the Addingtogethertheupperandlowerlevelsoftheinversiontran- frames also are given the true and estimated column densities. sition,thetotalcolumndensityofammoniainthe(1,1)levelis For comparison, Figs. 3 and 4 show the results for 0.5M⊙ N(1,1) = Nu (1+eT11/Tex). m(σod≤e0l.s1aknmdsf−o1r)1. M⊙ modelswithasmallerturbulentlinewidth Thecolumndensityofthe(2,2)level,N(2,2),canbederived Thetemperatureestimates derivedfromthe simulatedNH3 usingtwoslightlydifferentmethods:a)byestimatingτandT spectraarecorrecttowithin0.5Kandtheerrorsofthecolumn ex fromthehyperfinefitasinthecaseof(1,1);orb)byassuming 1 InJuvela&Ysard(2011)thegas-dustcouplingΛ wascalculated thatT isthesameasforthe(1,1)transitionandthatthe(2,2) g,d ex usingtheformulasgiveninGoldsmith(2001).Thetrueheatexchange line is optically thin. In the case b the integral τ(v)dv is esti- ratemaybehigher(seeYoungetal.2004).Thiswouldnothavealarge matedfromtheintegratedintensityofthe(2,2)mRaingroupusing effectonthetemperatureinthecorecentreswherethegasandthedust theantennaequation.Usuallyonlythemethodbisfeasible for arewellcoupled.However,itwouldmodifysomewhattheshapeofthe observationaldataofcoldcloudsbecausethe(2,2)satellitesare T profiles. kin 3 M.Juvelaetal.:ReliabilityofNH asthetemperatureprobeofcoldcloudcores 3 12 Ntrue=2.49 Nobs=2.54 Nobs=2.54 12 Ntrue=4.98 Nobs=5.07 Nobs=5.07 11 NCtrue=1.05 NCobs=1.24 NCobs=1.21 11 NCtrue=2.11 NCobs=2.39 NCobs=2.37 K)10 K)10 ( 9 ( 9 T T 8 8 7 7 Default Default 6 (cid:0) 6 (cid:3) 12 Nobs=2.53 Nobs=2.28 12 Nobs=5.05 Nobs=4.76 11 NCobs=1.23 NCobs=1.07 11 NCobs=2.37 NCobs=2.16 K)10 K)10 ( 9 ( 9 T T 8 8 7 7 6 (cid:1)g,d (cid:2)v 6 (cid:4)g,d (cid:5)v 12 Nobs=2.75 Nobs=2.53 12 Nobs=5.22 Nobs=5.05 11 NCobs=1.22 NCobs=1.21 11 NCobs=2.36 NCobs=2.36 K)10 N2obs=2.77 K)10 N2obs=5.50 ( 9 ( 9 T T 8 8 7 7 6 v PEH(AV=0) 6 v PEH(AV=0) 0.00 0.02 0.04 0.00 0.02 0.04 0.00 0.01 0.02 0.00 0.01 0.02 R[pc] R[pc] R[pc] R[pc] Fig.2. Theradialtemperatureprofiles(solidblackcurves),the Fig.3. AsFig.2butforthehalfsolarmasscore. estimated temperatures (dashed red lines), and the mass aver- agedtruetemperatures(blackhorizontallines)fortheonesolar mass models. The thin lines correspondto the data on a single 12 Ntrue=2.49 Nobs=2.59 Nobs=2.57 line-of-sightthroughthecloudcentreandthethicklinestodata 11 NCtrue=1.05 NCobs=1.19 NCobs=1.18 averaged with a gaussian beam. In the right hand part of each K)10 ( 9 frame, the difference between the estimated and the real mass T 8 averaged T has been scaled by a factor of ten for better vis- kin 7 Default ibility. The column densities derived from the observationsare 6 (cid:6) indicatedineachframe(unitsof1014cm−2),thesubscriptCde- 12 Nobs=2.56 Nobs=2.58 notingthecasewithbeamconvolution.Thetruecolumndensi- 11 NCobs=1.17 NCobs=1.18 tiesaregiveninthefirstframe.Forthev-model,thedottedline K)10 and the lower text entry indicate the result from a fit with two ( 9 T velocitycomponents(pencilbeamonly). 8 7 6 (cid:7)g,d (cid:8)v 12 N2obs=2.52 Nobs=2.50 density values are ∼10% or less. This applies to the observa- 11 NCobs=1.18 NCobs=1.13 tionsconductedwithapencilbeamandmostobservationswith K)10 ( 9 a gaussian beam. When one includes the convolution with the T 8 largebeam,thetemperaturevaluesreflectmorethevaluesfound 7 in the outer part of the cloud. However,comparedto the beam 6 v PEH(AV=0) averagedrealkinetictemperature,thevaluesappeartobebiased 0.00 0.02 0.04 0.00 0.02 0.04 towardstheT in thecloudcentre.Theerrorislargestforthe R[pc] R[pc] kin σ modelwhereitcanapproach1K(Fig.2). v Fig.4. AsFig.2 butwith thesyntheticammoniaspectramod- The spectra of the v-model are double peaked because of elled with a smaller, 0.1kms−1 turbulent linewidth. For the the infall motion that at the centre leads to maximum line-of- modelv,thepencilbeamobservationsarefittedwithtwoveloc- sight velocities of ±1kms−1 (see Fig. 1). The redshifted peak itycomponentsandtheconvolvedspectrawithasinglevelocity is stronger than the blueshifted peak. This is opposite to the component. expected behaviour in contracting clouds and is caused by the fact that the temperature is decreasing towards the core cen- tre within the innermost ∼20% of the cloud radius. When the 3.2.Theinfluenceofnoise spectra are modelled as the sum of two components, the indi- vidual features described with gaussians, the analysis recovers Theinfluenceofobservationalnoisewasexaminedbyanalysing the correct solution with good accuracy. In the case of narrow a series ofspectra with progressivelyhighersignal-to-noisera- lines(σ ≤0.1kms−1)asinglecomponentfittothetwovelocity tios. The S/N ratio is defined as the ratio between the peak componentswouldresultinanerrorof∼1K.Ontheotherhand, intensity of the (2,2) spectrum and the rms noise per chan- whenthatmodelisobservedwithalargerbeam,onlyasingleve- nel. The rms noise added to the (1,1) spectra was the same in locitycomponentremainsvisible.InFig.4thebeamconvolved brightness temperature units. In addition to the default model datawerefittedwithasinglegaussianandthepencilbeamob- (marked ‘def’), the models with the temperature distributions servationswith two components.Inboth cases the temperature correspondingtothe‘σ ’and‘PEH’caseswereexamined,i.e., v estimatesremainwithin∼0.2Kofthecorrectvalue. modelswith strong inward and outward temperaturegradients. 4 M.Juvelaetal.:ReliabilityofNH asthetemperatureprobeofcoldcloudcores 3 ) 88..12 a. DMe=fa1u.0lt 34..502m)(cid:9) ) 4300 a. (cid:11)Mv=1.0 342)/kn K 8.0 c K m(cid:12) T(kin7.9 3.014(10 T(kin2100 12140c 7.8 Np (1 7.7 2.5 0 0 N 2.8 PEH(A =0) 14 b. (cid:10)Mv=1.0 2.62) 9.85 b. M=1.0V 3.0 )/kn K) 12 cm(cid:9) K) 9.80 2.52m(cid:12) T(kin10 22..2414(10 T(kin9.75 2.0140c 8 Np (1 2.0 9.70 N 1.5 6 10.0 c. PEH(AV=0) 1.0 10.0 9.9 M=1.0 4.02) kn K) 9.8 3.5 cm(cid:9) Fig.6. Thegaskinetictemperature(plussymbols)andthecol- T(kin 99..67 3.014(10 aurmenscdaelnedsitwyit(hcrfoascsteosr)swknheinntthheerdaenngseitoiefs1o-6f4th.Teh1e.0cMolsuumn nmdoedne-l Np sitieshavebeennormalizedwithkn.Thesolidlinesindicatethe 9.5 2.5 truevaluesandthedashedlinesarethevaluesdeducedfromthe syntheticobservations.Theframescorrespondtodifferenttem- 10.0 100.0 S/N peraturedistributionsas markedin the upperrighthandcorner ofeachframe. Fig.5. The gas kinetic temperature (plus symbols) and the column density (crosses) estimated from spectra with different theoriginalσ and PEH models(Fig.2) andare notchanged2 signal-to-noise ratios. For each S/N ratio, the figure shows re- v Therefore, the changes will be only because of the increase of sultsfromfiverealisationsandtheiraverageasthedashedlines. the density and the column density. Figure 6 shows the result- Thehorizontallinesindicatethetruevaluesinthemodels.The ingT andN(para-NH )estimatesresultingfromobservations three frames correspond to the default model (def’), the σ - kin 3 V with a pencil beam towards the cloud centre. As expected, the model,andthePEHmodel,respectively,ofthe1.0M cloud. sun estimatesshowsome biaswhenthe columndensitiesare much higherthanfor the original1M⊙ Bonnor-Ebertspheres.In the PEH modeltheT estimatescontinuetobeveryaccurateand kin Both the M = 0.5M⊙ and M = 1.0M⊙ cloud models were evenin columndensitytheerrorrisesto ∼ 50%onlywhenthe used,calculatingtheammoniaspectrawitheither1.0kms−1 or densityis some 50 timesthe originalvalues.In thismodel,the 0.1kms−1linewidths.Again,thenarrowerlinewidthisnotcon- realtemperatureisquiteconstantwithinthecentralregionsand sistent with the original derivation of the temperature profiles apparentlytheopticaldepthsarestillnothighenoughsothatthe (Juvela&Ysard 2011) but gives some insight to clouds with spectrawouldreacttothewarmbutlowdensitysurfacelayers. higherlineopticaldepths. Thechangesweremoredramaticintheσ -modelwherethere- v Figure 5 shows the estimated kinetic temperaturesand col- sultswereessentiallywrongafterkn ∼4.Inthismodeltheoptical umndensitiesinrelationtotheirtruevaluesinthemodelclouds. depthswerehighertostartwith,becauseofthenarrowlinewidth Thespectrawerecalculatedusingapencilbeam.TheS/Ncovers atthecentre. a rangefrom∼3 to 300in multiplicativesteps of 1.5.For each Figure 7 shows the actual spectra calculated for kn=1 and S/N ratio we show the results from five realizationsof spectra, kn=32.Intheσv-model,themaingroupbecomesstronglyself- thedashedlinescorrespondingtotheirmeanvalue.Theresults absorbed and, because the kinetic temperature is higher in the fromthe M =0.5M⊙andtheσV=0.1kms−1werequalitatively centre than at the surface, the intensity of the satellite lines is similar. higherthanforthemaingroup.Thisis,ofcourse,asituationthat cannotbeaccountedforintheanalysisassumingahomogeneous medium. 3.3.Modelsofhighopticaldepth Inthedefault1Msunmodelthepeakopticaldepthsareτ(1,1)=0.7 4. Discussion andτ =0.013.Inthe0.5M cloudtheseincreaseto1.2and (2,2) sun 0.04,respectively.When the turbulentlinewidthwas decreased Tafallaetal. (2004) examined the validity of the kinetic tem- from1.0kms−1 to 0.1kms−1,the valueswerenaturallyhigher, perature estimates from NH3 using isothermal models. In the 4.3and0.33forthe(1,1)and(2,2)lines,respectively.However, present study, we calculate the mass averaged kinetic temper- asthesatellite linescontinuetobemostlyopticallythin,thisis atures in model clouds with realistic temperature profiles. The notabigproblemfortheanalysisofthespectra. 2 Weareinvestigatingtheeffectsofdifferenttemperatureprofilesin To determine when and how the errors increase to signifi- general.However,wenotethatforhighk thegaskinetictemperature n cantlevels,wetookthe1.0Msuncloudsandcalculatedaseriesof shouldapproachthedusttemperatureandTkinisbeexpectedtodecrease modelswherethedensitiesweremultipliedwithconstantfactors towardsthecorecentre(seee.g.Crapsietal.2007).Thesituationcould kn between 1 and 64. The temperature profiles are taken from changeonlyifthecoreisheatedinternally. 5 M.Juvelaetal.:ReliabilityofNH asthetemperatureprobeofcoldcloudcores 3 6 a σ, kn=1 b PEH, kn=1 bulent linewidth,σV = 0.1km−1s−1, completely wrong results werealreadyencounteredwithdensitiesafewtimeshigherthat 4 those of an 1M Bonnor-Ebertsphere. If the fractionalabun- sun ()K 2 dancewerelargerthanthe 10−8 assumedin ourmodels,obser- Ta vationsofnormalhydrostaticcorescouldbeaffected.However, 0 in starless cores the values are not likely to be much higher −2 (Hotzeletal.2001;Tafallaetal.2002;Crapsietal.2007). Tafallaetal. (2004) found that the excitation temperatures 8 c σ, kn=32 d PEH, kn=32 of the (1,1) and (2,2) lines varied by a factor of several. This 6 variation depends on several factors, the cloud optical depth, )K 4 the volume density, and the variation of the kinetic tempera- ( Ta 2 ture.Figure8showsthesituationinthoseofour1.0M⊙models 0 wherethedifferenceintheradialkinetictemperatureprofilesis the largest. In the σ model the kinetic temperature increases −2 V −20 −10 0 10 20 −20 −10 0 10 20 inwards and, in combination of higher volume density and en- v(km/s) v(km/s) hancedphotontrapping,theexcitationtemperaturesatthecloud centrearethreetimesashighasatthecloudboundary.Towards Fig.7. Comparison of the original spectra from the one solar the centre also the difference between the excitation tempera- massσ andthePEH modelsandthespectraobtainedafterthe v turesofthe(1,1)and(2,2)transitionsbecomesmorenoticeable. densitieshavebeenscaledbyafactorofk =32.Fortheplotting, n On theotherhand,in the PEH case theoutwardincreasingki- the(2,2)spectrahavebeenscaledbyafactorof3(upperframes) netictemperaturehelpstokeeptheexcitationconditionsalmost or0.5(lowerframes)andshiftedby-2K. constant.Therefore,itisnotsurprisingthatthekinetictempera- tureestimatedfromtheobservedspectraremainedaccurateeven values are compared to the kinetic temperature estimates de- whenthedensitywasincreased(Fig.6). rived with a standard LTE method, using the ammonia spectra Ammoniawas foundto be a veryreliable tracer of the real ‘observed’fromthesemodels. mass averaged gas temperature within the modelled Bonnor- The estimated kinetic temperatures were generally found Ebert spheres. The temperature at the centre of a cloud could to be very accurate. In the case of model clouds with masses still differ from this number by several degrees. In our models 0.5M⊙ and 1M⊙, the difference between the temperature de- this difference was at most ∼1K. However, if the signal from rivedfromtheNH spectraandtherealmass-averagedtemper- verycentrebecomesweakerbecauseofalowerabundancecom- 3 ature was of the order of 0.1K, only rarely approaching 1K. binedwithalowkineticandexcitationtemperatures,thediffer- Similarly,theestimatedcolumndensitiesofpara-NH remained encecanbemoresignificant. 3 correcttowithin∼10%. Inthispaperwehaveassumedtheammoniaabundancetobe Inoneofthemodelstheinfallvelocityproducedtwoveloc- constantasafunctionofthecloudradius(seee.g.Tafallaetal. ity components whose presence, in the case of large turbulent 2006).Iftheabundancevaries,NH3islikelytoprovideaccurate linewidthsσ = 1.0km−1, was notimmediatelyobviousfrom estimates of the average temperature weighted not only by the V thelineprofiles.Theanalysiscompletedusingasinglegaussian massbutalsobythefractionalabundance.Iftheammoniaabun- componentstill led to only ∼1K error. A fit with two velocity dance increasestowardsthe centre (e.g.Tafallaetal. 2002) the componentsresultedintwiceashigherrorsinboththetempera- resultwillbeabetterestimateofthecentralcoretemperature.In tureandtheestimatedcolumndensity(Fig.2).Whentheturbu- coresdenserthanconsideredherethesituationmaybereversed lentlinewidthwasreducedinthecloudcoresothatthevelocity as even NH3 becomes depleted in the very centre of the core componentsbecame clearly visible in the (1,1)profiles, the er- (Aikawaetal.2005).Asanillustrationoftheassociateduncer- rorofasinglecomponentfitincreasedto∼1.5Kandthecolumn tainties, we consideredthe σv modelwith 1.0M⊙, varyingthe densitywasoverestimatedby20%(Fig.4). However,thistime abundancebetween10−7.5 and10−8.5 asalinearfunctionofthe the two component fit did recover the correct results with less logarithmoftheradius.OneobtainsanestimateofTkin=10.49K than10%errors.Thisincreasesthegeneralconfidenceinthere- when the abundance increases inwards and 10.59K when the sultsofobtainedfromammoniaspectraobservedwithadequate abundance increases outwards. Both are within 0.25K of the resolution.Itappearsunlikelythattheeffectofhiddenfeatures, valuefromthepreviousconstantabundancemodel.Thus,inthis e.g.ofmultiplevelocitycomponents,wouldbeamplifiedinthe casetheeffectoftheabundancegradientsisnotverysignificant. T andN estimates. However, we will return to this questions in future papers that kin When the signal-to-noise of the (2,2) spectra is decreased discussself-consistentmodelsofthechemistryandofthether- below S/N∼10, the temperature errors increased in our tests to malbalance. ∼1K.Theresultswerenotsignificantlybiasedsothatevenfora setofsourcesobservedatlowS/N,the meanpropertiesshould 5. Conclusions be relatively trustworthy. The sensitivity to noise naturally de- pendsonthewidthofthelines. We have calculated ammonia emission spectra using non-LTE When the column density is increased much beyond that radiativetransfermodellingandcloudcoretemperatureprofiles foundinourbasicmodels,the(1,1)becomesopticallythickand takenfromtheliterature.Wehavecarriedoutanalysisofthesim- therearenolongerguaranteesoftheaccuracyoftheresults.In ulatedspectraandcomparedtheresultswiththetrueparameters particular,thelinesmightnolongerprobetheconditionsatthe ofthemodelclouds.Thishasledtothefollowingconclusions: centreofverydensecores.Wecarriedoutonetestwithanadhoc scalingofthedensities.Thebehaviourwasfoundtodependvery – For the ∼1M⊙ hydrostaticclouds, the kinetic temperatures muchonthelinewidths(affectingtheinitiallineopacity)andthe and column densities derived from the ammonia observa- temperaturestructureofthecloud.Inthecasewithasmalltur- tionsareaccuratetobetterthan10%accuracy. 6 M.Juvelaetal.:ReliabilityofNH asthetemperatureprobeofcoldcloudcores 3 18 16 14 K) ( 12 (cid:13)v Tex PEH(A =0) T,kin10 v 8 6 4 0.00 0.01 0.02 0.03 0.04 0.05 R(pc) Fig.8. Comparisonoftemperaturesinthe1.0M⊙cloudmodels σ and peh.Shownaretheradialprofilesofthekinetictemper- v ature (solid lines) and the excitation temperatures of the (1,1) (dashedline)and(2,2)(dash-dottedline). – The presenceofseveralvelocitycomponentscanbe identi- fiedfromthelineprofilesbeforetheyhaveasignificanteffect ontheaccuracyoftheanalysis. – The uncertainty of the kinetic temperature estimates in- creasesto∼1Kwhenthesignal-to-noiseofthe(2,2)spectra isdecreasedtoS/N∼10. – In models of higher density, the behaviour depends the ki- netic temperature profile of the cloud. Quite wrong results can already be encountered with models a few times more opaquethanthe1M Bonnor-Ebertspheres. sun – Apartfromthemostopaquecores,theammoniawasfound tobeaveryreliabletracerofthemassaveragedkinetictem- perature.Thetemperatureatthecentreofdensecorescould stilldifferfromthisvaluebyseveraldegrees. Acknowledgements. Theauthors acknowledge thesupportoftheAcademyof FinlandGrantsNo.127015,250741,and132291.Theauthorsthankthereferee Dr.NealEvansforhelpfulcomments,whichimprovedthepaper. References Aikawa,Y.,Herbst,E.,Roberts,H.,&Caselli,P.2005,ApJ,620,330 Bergin,E.A.&Tafalla,M.2007,ARA&A,45,339 Crapsi,A.,Caselli,P.,Walmsley,M.C.,&Tafalla,M.2007,A&A,470,221 Danby, G., Flower, D. R., Valiron, P.,Schilke, P., & Walmsley, C. M. 1988, MNRAS,235,229 Galli,D.,Walmsley,M.,&Gonc¸alves,J.2002,A&A,394,275 Goldsmith,P.F.2001,ApJ,557,736 Harju,J.,Juvela,M.,Schlemmer,S.,etal.2008,A&A,482,535 Harju,J.,Walmsley,C.M.,&Wouterloot,J.G.A.1993,A&AS,98,51 Ho,P.T.P.&Townes,C.H.1983,ARA&A,21,239 Hotzel,S.,Harju,J.,Lemke,D.,Mattila,K.,&Walmsley,C.M.2001,A&A, 372,302 Juvela,M.1997,A&A,322,943 Juvela,M.&Ysard,N.2011,ApJ,739,63 Keto,E.,Rybicki,G.B.,Bergin,E.A.,&Plume,R.2004,ApJ,613,355 Kukolich,S.1967,PhysicalReview,156,83 Mathis,J.S.,Mezger,P.G.,&Panagia,N.1983,A&A,128,212 Scho¨ier,F.L.,vanderTak,F.F.S.,vanDishoeck,E.F.,&Black,J.H.2005, A&A,432,369 Tafalla,M.,Myers,P.C.,Caselli,P.,&Walmsley,C.M.2004,Ap&SS,292,347 Tafalla,M.,Myers,P.C.,Caselli,P.,Walmsley,C.M.,&Comito,C.2002,ApJ, 569,815 Tafalla,M.,Santiago-Garc´ıa,J.,Myers,P.C.,etal.2006,A&A,455,577 Ungerechts,H.,Winnewisser,G.,&Walmsley,C.M.1986,A&A,157,207 Walmsley,C.M.&Ungerechts,H.1983,A&A,122,164 Young,K.E.,Lee,J.-E.,Evans,II,N.J.,Goldsmith,P.F.,&Doty,S.D.2004, ApJ,614,252 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.