CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS General editors: P. V. Landshoff, D. R. Nelson, D. W. Sciama, S. Weinberg RELATIVISTIC FLUIDS AND MAGNETO-FLUIDS With Applications in Astrophysics and Plasma Physics RELATIVISTIC FLUIDS AND MAGNETO-FLUIDS With Applications in Astrophysics and Plasma Physics A. M. ANILE University of Catania The right of the University of Cambridge to print and sett all manner of books was granted by Henry VIU in 1534. The University has printed and published continuously since 1584. CAMBRIDGE UNIVERSITY PRESS Cambridge New York Port Chester Melbourne Sydney CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge. org Information on this title: www.cambridge.org/9780521304061 © Cambridge University Press 1989 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1989 This digitally printed first paperback version 2005 A catalogue record for this publication is available from the British Library Library of Congress Cataloguing in Publication data Anile, Angelo Marcello. Relativistic fluids and magneto-fluids: with applications in astrophysics and plasma physics /A. M. Anile. p. cm. - (Cambridge monographs on mathematical physics) Bibliography: p. Includes index. ISBN 0-521-30406-7 1. Plasma astrophysics. 2. Relativistic fluid dynamics. 3. Magnetohydrodynamics. I. Title. II. Series. QB462.7.A55 1989 523.01-dcl9 88-36742 CIP ISBN-13 978-0-521-30406-1 hardback ISBN-10 0-521-30406-7 hardback ISBN-13 978-0-521-01812-8 paperback ISBN-10 0-521-01812-9 paperback TO MY PARENTS La filosofia e' scritta in questo grandissimo libro che continuamente ci sta aperto innanzi agli occhi (io dico l'universo), ma non si puo' intendere se prima non s'impara a intender la lingua, e conoscer i caratteri, ne' quali e' scritto. Egli e' scritto in lingua matematica, e i caratteri sono triangoli, cerchi, ed altre figure geometriche, senza i quali mezzi e' impossibile a intenderne umanamente parola; senza questi e' un aggirarsi vanamente per un oscuro labirinto. G. GALILEI, II Saggiatore, Opere, Ed. Nazionale, vol. VI, p. 300. Certo, volendo, uno puo' anche mettersi in testa di trovare un ordine nelle stelle, nelle galassie, un ordine nelle finestre illuminate dei grattacieli vuoti dove il personale della pulizia tra le nove e mezzanotte da' la cera agli uffici. Giustificare, il gran lavoro e' questo, giustificate se non volete che tutto si sfasci. i. CALVINO, Ti con zero, 2nd edition, 1967, G. Einaudi, Torino. Contents Preface page xi 1 Introduction 1 2 Mathematical structure 4 2.0 Introduction 4 2.1 Quasi-linear hyperbolic systems in conservation form 5 2.2 The equations of relativistic nondissipative fluid dynamics 9 2.3 Test relativistic fluid dynamics as a quasi-linear hyperbolic system 17 2.4 Test relativistic magneto-fluid dynamics as a quasi-linear hyperbolic system 23 2.5 Supplementary conservation laws and symmetrization 43 2.6 Main field for relativistic fluid dynamics 46 2.7 Main field for relativistic magneto-fluid dynamics 52 3 Singular hypersurfaces in space-time 57 3.0 Introduction 57 3.1 Regularly discontinuous tensor fields across a hypersurface 59 4 Propagation of weak discontinuities 71 4.0 Introduction 71 4.1 Characteristic hypersurfaces 73 4.2 Weak discontinuities 80 4.3 Weak discontinuities in relativistic fluid dynamics 89 4.4 Weak discontinuities in relativistic magneto-fluid dynamics 92 4.5 Electromagnetic and gravitational discontinuities 94 5 Relativistic simple waves 103 5.0 Introduction 103 5.1 General formalism 105 viii Contents 5.2 Simple waves in relativistic fluid dynamics: Eulerian treatment 109 5.3 One dimensional relativistic fluid dynamics in Lagrangian coordinates 112 5.4 Simple waves in Lagrangian coordinates 117 5.5 Evaluation of the Riemann invariants for relativistic acoustic simple waves 120 5.6 General properties of isentropic flow 130 5.7 Unsteady one dimensional and isentropic flow in special relativity 132 5.8 Stationary potential two dimensional flow in special relativity 134 5.9 Simple waves in relativistic magneto-fluid dynamics 137 6 Relativistic geometrical optics 157 6.0 Introduction 157 6.1 Geometrical optics in general relativity 160 6.2 Geometrical optics in general relativistic refractive media 165 6.3 Electromagnetic waves in a cold relativistic plasma: linear theory 170 6.4 Electromagnetic waves in a cold relativistic plasma: weakly nonlinear analysis 176 7 Relativistic asymptotic waves 188 7.0 Introduction 188 7.1 Asymptotic waves for quasi-linear systems 189 7.2 Asymptotic waves in relativistic fluid dynamics 196 7.3 Asymptotic waves in relativistic magneto-fluid dynamics 199 7.4 Asymptotic and approximate waves for Einstein's equations in vacuo 202 8 Relativistic shock waves 211 8.0 Introduction 211 8.1 The jump conditions in relativistic fluid dynamics 215 8.2 Solutions of the jump conditions 228 8.3 Relativistic detonation and deflagration waves 244 8.4 The jump conditions in relativistic magneto-fluid dynamics 258 8.5 Evolutionary conditions for relativistic shock waves 273 Contents ix 9 Propagation of relativistic shock waves 276 9.0 Introduction 276 9.1 Damping of plane one dimensional shock waves in a relativistic fluid 277 9.2 Propagation of weak shock waves 285 10 Stability of relativistic shock waves 289 10.0 Introduction 289 10.1 Linear stability of a relativistic shock 291 10.2 Corrugation stability of a relativistic shock 301 10.3 Further stability considerations 311 10.4 Examples 315 References 325 Index 335
Description: