ebook img

Relativistic Classical Mechanics and Electrodynamics PDF

138 Pages·2020·2.176 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Relativistic Classical Mechanics and Electrodynamics

Series ISSN 1939-5221 L A N D • H O R W I T Z Relativistic Classical Mechanics and Electrodynamics Martin Land, Hadassah College, Jerusalem Relativistic Lawrence P. Horwitz, Tel Aviv University, Bar Ilan University, and Ariel University This book presents classical relativistic mechanics and electrodynamics in the Feynman-Stueckelberg R E event-oriented framework formalized by Horwitz and Piron. The full apparatus of classical analytical L A Classical mechanics is generalized to relativistic form by replacing Galilean covariance with manifest Lorentz T I τ V covariance and introducing a coordinate-independent parameter to play the role of Newton’s IS T universal and monotonically advancing time. Fundamental physics is described by the τ-evolution of IC C a system point through an unconstrained 8D phase space, with mass a dynamical quantity conserved L A under particular interactions. Classical gauge invariance leads to an electrodynamics derived from five SS Mechanics and τ τ IC -dependent potentials described by 5D pre-Maxwell field equations. Events trace out worldlines as A L advances monotonically, inducing pre-Maxwell fields by their motions, and moving under the influence M E of these fields. The dynamics are governed canonically by a scalar Hamiltonian that generates evolution C H τ τ dτ of a 4D block universe defined at to an infinitesimally close 4D block universe defined at + . This A Electrodynamics N I electrodynamics, and its extension to curved space and non-Abelian gauge symmetry, is well-posed and C S integrable, providing a clear resolution to grandfather paradoxes. Examples include classical Coulomb A N D scattering, electrostatics, plane waves, radiation from a simple antenna, classical pair production, classical E L CPT, and dynamical solutions in weak field gravitation.This classical framework will be of interest to E C workers in quantum theory and general relativity, as well as those interested in the classical foundations T R O of gauge theory. D Y N A M I C Martin Land S Lawrence P. Horwitz ABOUT SYNTHESIS This volume is a printed version of a work that appears in the Synthesis Digital Library of Engineering and Computer Science. Synthesis Lectures provide concise original presentations of important research and development topics, published quickly in digital and print formats. For more information, visit our website: M http://store.morganclaypool.com O R G A N & C L A store.morganclaypool.com Y P O O L Relativistic Classical Mechanics and Electrodynamics Synthesis Lectures on Engineering, Science, and Technology RelativisticClassicalMechanicsandElectrodynamics MartinLandandLawrenceP.Horwitz 2019 Copyright©2020byMorgan&Claypool Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans—electronic,mechanical,photocopy,recording,oranyotherexceptforbriefquotations inprintedreviews,withoutthepriorpermissionofthepublisher. RelativisticClassicalMechanicsandElectrodynamics MartinLandandLawrenceP.Horwitz www.morganclaypool.com ISBN:9781681737065 paperback ISBN:9781681737072 ebook ISBN:9781681737089 hardcover DOI10.2200/S00970ED1V01Y201912EST001 APublicationintheMorgan&ClaypoolPublishersseries SYNTHESISLECTURESONENGINEERING,SCIENCE,ANDTECHNOLOGY Lecture#1 SeriesISSN ISSNpending. Relativistic Classical Mechanics and Electrodynamics Martin Land HadassahCollege,Jerusalem Lawrence P. Horwitz TelAvivUniversity,BarIlanUniversity,andArielUniversity SYNTHESISLECTURESONENGINEERING,SCIENCE,AND TECHNOLOGY#1 M &C Morgan &cLaypool publishers ABSTRACT This book presents classical relativistic mechanics and electrodynamics in the Feynman- Stueckelberg event-oriented framework formalized by Horwitz and Piron. The full apparatus ofclassicalanalyticalmechanicsisgeneralizedtorelativisticformbyreplacingGalileancovari- ancewithmanifestLorentzcovarianceandintroducingacoordinate-independentparameter(cid:28) toplaytheroleofNewton’suniversalandmonotonicallyadvancingtime.Fundamentalphysics is described by the (cid:28)-evolution of a system point through an unconstrained 8D phase space, withmassadynamicalquantityconservedunderparticularinteractions.Classicalgaugeinvari- ance leads to an electrodynamics derived from five (cid:28)-dependent potentials described by 5D pre-Maxwellfieldequations.Eventstraceoutworldlinesas(cid:28) advancesmonotonically,inducing pre-Maxwell fields by their motions, and moving under the influence of these fields. The dy- namicsaregovernedcanonicallybyascalarHamiltonianthatgeneratesevolutionofa4Dblock universedefinedat(cid:28) toaninfinitesimallyclose4Dblockuniversedefinedat(cid:28) d(cid:28).Thiselec- C trodynamics,anditsextensiontocurvedspaceandnon-Abeliangaugesymmetry,iswell-posed andintegrable,providingaclearresolutiontograndfatherparadoxes.Examplesincludeclassi- cal Coulomb scattering, electrostatics, plane waves, radiation from a simple antenna, classical pairproduction,classicalCPT,anddynamicalsolutionsinweakfieldgravitation.Thisclassical framework will be of interest to workers in quantum theory and general relativity, as well as thoseinterestedintheclassicalfoundationsofgaugetheory. KEYWORDS spacetime,relativisticmechanics,classicalelectrodynamics,electrostatics,quantum fieldtheory vii Contents Preface ........................................................... ix Symbols .......................................................... xi PARTI Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 ConceptualApproachestoSpacetime ..................................3 1.1 PointMechanicsin4DSpacetime ................................... 3 1.2 TheTwoAspectsofTime .......................................... 7 1.3 The“ProperTime”FormalisminQED ............................... 8 1.4 TheStueckelberg–Horwitz–Piron(SHP)Framework .................... 9 1.5 Bibliography .................................................... 11 PARTII Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 CanonicalRelativisticMechanics.....................................15 2.1 LagrangianandHamiltonianMechanics ............................. 15 2.2 TheFreeRelativisticParticle ....................................... 17 2.3 TheRelativisticParticleinaScalarPotential .......................... 18 2.4 Two-BodyProblemwithScalarPotential ............................. 20 2.5 Many-BodyProblemandStatisticalMechanics........................ 21 2.6 Bibliography .................................................... 23 3 ClassicalElectrodynamics ...........................................25 3.1 ClassicalGaugeTransformations ................................... 25 3.2 LorentzForce ................................................... 27 3.3 FieldDynamics.................................................. 29 3.4 EnsembleofEventCurrents ....................................... 31 viii 3.5 The5DWaveEquationanditsGreen’sFunctions ...................... 33 3.6 TheMass-Energy-MomentumTensor ............................... 34 3.7 WorldlineConcatenation.......................................... 36 3.8 PCTinClassicalSHPTheory...................................... 38 3.9 Bibliography .................................................... 43 PARTIII Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 ProblemsinElectrostaticsandElectrodynamics.........................47 4.1 TheCoulombProblem............................................ 47 4.1.1 ContributiontoPotentialfromG ........................ 48 Maxwell 4.1.2 ContributiontoPotentialfromG ...................... 50 Correlation 4.2 Liénard–WiechartPotentialandFieldStrength........................ 53 4.3 Electrostatics ................................................... 57 4.4 PlaneWaves .................................................... 62 4.5 RadiationfromaLineAntenna..................................... 65 4.6 ClassicalPairProduction .......................................... 73 4.7 ParticleMassStabilization......................................... 82 4.7.1 Self-Interaction........................................... 84 4.7.2 StatisticalMechanics ...................................... 89 4.8 SpeedsofLightandtheMaxwellLimit .............................. 93 4.9 Bibliography .................................................... 95 5 AdvancedTopics...................................................97 5.1 ElectrodynamicsfromCommutationRelations ........................ 97 5.2 ClassicalNon-AbelianGaugeTheory............................... 106 5.3 EvolutionoftheLocalMetricinCurvedSpacetime ................... 110 5.4 ZeemanandStarkEffects ........................................ 114 5.5 ClassicalMechanicsandQuantumFieldTheory ...................... 116 5.6 Bibliography ................................................... 118 Authors’Biographies ..............................................121

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.