ebook img

Reinforcement and Systemic Machine Learning for Decision Making PDF

298 Pages·2012·3.371 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reinforcement and Systemic Machine Learning for Decision Making

REINFORCEMENT AND SYSTEMIC MACHINE LEARNING FOR DECISION MAKING www.it-ebooks.info fmatter_fmatter.qxd 6/19/2012 6:40 PM Page ii IEEE Press 445 Hoes Lane Piscataway, NJ 08855 IEEE Press Editorial Board John B. Anderson, Editor in Chief R. Abhari G. W. Arnold F. Canavero D. Goldof B-M. Haemmerli D. Jacobson M. Lanzerotti O. P. Malik S. Nahavandi T. Samad G. Zobrist Kenneth Moore, Director of IEEE Book and Information Services (BIS) www.it-ebooks.info Reinforcement and Systemic Machine Learning for Decision Making Parag Kulkarni www.it-ebooks.info Copyright(cid:1)2012bytheInstituteofElectricalandElectronicsEngineers,Inc. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.Allrightsreserved. PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyform orbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptas permittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwritten permissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeetothe CopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400, fax(978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisherforpermission shouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken, NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbestefforts inpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernor authorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnot limitedtospecial,incidental,consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,please contactourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidethe UnitedStatesat(317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitour websiteatwww.wiley.com. LibraryofCongressCataloging-in-PublicationData: Kulkarni,Parag. Reinforcementandsystemicmachinelearningfordecisionmaking/Parag Kulkarni. p.cm.–(IEEEseriesonsystemsscienceandengineering;1) ISBN978-0-470-91999-6 1.Reinforcementlearning. 2.Machinelearning. 3.DecisionMaking.I. Title. Q325.6.K852012 006.301–dc23 2011043300 PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 www.it-ebooks.info Dedicated tothe late D.B. Joshi and thelate SavitriJoshi, who inspired metothinkdifferently www.it-ebooks.info CONTENTS Preface xv Acknowledgments xix About the Author xxi 1 Introduction toReinforcement and Systemic Machine Learning 1 1.1. Introduction 1 1.2. Supervised, Unsupervised, andSemisupervised Machine Learning 2 1.3. Traditional Learning Methods andHistoryof Machine Learning 4 1.4. What IsMachine Learning? 7 1.5. Machine-LearningProblem 8 1.5.1. Goals of Learning 8 1.6. Learning Paradigms 9 1.7. Machine-LearningTechniques andParadigms 12 1.8. What IsReinforcement Learning? 14 1.9. Reinforcement Function and Environment Function 16 1.10. Need ofReinforcementLearning 17 1.11. Reinforcement Learningand Machine Intelligence 17 1.12. What IsSystemicLearning? 18 1.13. What IsSystemicMachine Learning? 18 1.14. Challengesin Systemic Machine Learning 19 1.15. Reinforcement Machine Learningand Systemic Machine Learning 19 1.16. Case Study Problem Detection ina Vehicle 20 1.17. Summary 20 Reference 21 2 Fundamentals of Whole-System, Systemic, and Multiperspective Machine Learning 23 2.1. Introduction 23 2.1.1. What IsSystemicLearning? 24 2.1.2. History 26 vii www.it-ebooks.info viii CONTENTS 2.2. What IsSystemicMachine Learning? 27 2.2.1. Event-Based Learning 29 2.3. Generalized SystemicMachine-Learning Framework 30 2.3.1. System Definition 31 2.4. MultiperspectiveDecision Making andMultiperspective Learning 33 2.4.1. Representation Based on Complete Information 40 2.4.2. Representation Based on PartialInformation 41 2.4.3. Uni-PerspectiveDecisionScenarioDiagram 41 2.4.4. Dual-PerspectiveDecisionScenarioDiagrams 41 2.4.5. MultiperspectiveRepresentativeDecision Scenario Diagrams 42 2.4.6. QualitativeBelief Networkand ID 42 2.5. Dynamic and InteractiveDecisionMaking 43 2.5.1. InteractiveDecision Diagrams 43 2.5.2. Role of TimeinDecisionDiagrams and Influence Diagrams 43 2.5.3. Systemic ViewBuilding 44 2.5.4. Integration ofInformation 45 2.5.5. Building RepresentativeDSD 45 2.5.6. Limited Information 45 2.5.7. Role of MultiagentSystem inSystemic Learning 46 2.6. The Systemic Learning Framework 47 2.6.1. Mathematical Model 50 2.6.2. Methods for Systemic Learning 50 2.6.3. AdaptiveSystemic Learning 51 2.6.4. Systemic LearningFramework 52 2.7. System Analysis 52 2.8. Case Study: Need ofSystemicLearninginthe Hospitality Industry 54 2.9. Summary 55 References 56 3 Reinforcement Learning 57 3.1. Introduction 57 3.2. LearningAgents 60 3.3. Returns and Reward Calculations 62 3.3.1. Episodic andContinuing Task 63 3.4. Reinforcement Learning and AdaptiveControl 63 3.5. Dynamic Systems 66 3.5.1. DiscreteEventDynamic System 67 3.6. Reinforcement Learning and Control 68 www.it-ebooks.info CONTENTS ix 3.7. MarkovPropertyand MarkovDecisionProcess 68 3.8. Value Functions 69 3.8.1. Action and Value 70 3.9. Learning anOptimal Policy(Model-Based and Model-FreeMethods) 70 3.10. Dynamic Programming 71 3.10.1. Properties ofDynamicSystems 71 3.11. AdaptiveDynamicProgramming 71 3.11.1. Temporal Difference (TD) Learning 71 3.11.2. Q-Learning 74 3.11.3. UnifiedView 74 3.12. Example:Reinforcement Learning for Boxing Trainer 75 3.13. Summary 75 Reference 76 4 SystemicMachineLearning andModel 77 4.1. Introduction 77 4.2. AFramework for Systemic Learning 78 4.2.1. Impact Space 80 4.2.2. Interaction-Centric Models 85 4.2.3. Outcome-Centric Models 85 4.3. Capturing the Systemic View 86 4.4. Mathematical Representation of System Interactions 89 4.5. Impact Function 91 4.6. Decision-Impact Analysis 91 4.6.1. Time and Space Boundaries 92 4.7. Summary 97 5 Inference and Information Integration 99 5.1. Introduction 99 5.2. InferenceMechanisms and Need 101 5.2.1. ContextInference 103 5.2.2. InferencetoDetermine Impact 103 5.3. Integrationof Contextand Inference 107 5.4. Statistical Inference andInduction 111 5.4.1. Direct Inference 111 5.4.2. Indirect Inference 112 5.4.3. InformativeInference 112 5.4.4. Induction 112 5.5. Pure Likelihood Approach 112 www.it-ebooks.info x CONTENTS 5.6. Bayesian Paradigm andInference 113 5.6.1. Bayes’ Theorem 113 5.7. Time-Based Inference 114 5.8. InferencetoBuild aSystemView 114 5.8.1. Information Integration 115 5.9. Summary 118 References 118 6 Adaptive Learning 119 6.1. Introduction 119 6.2. AdaptiveLearning and AdaptiveSystems 119 6.3. What IsAdaptiveMachine Learning? 123 6.4. Adaptation andLearningMethodSelection Based on Scenario 124 6.4.1. Dynamic Adaptation andContext-AwareLearning 125 6.5. Systemic Learningand AdaptiveLearning 127 6.5.1. Use ofMultiple Learners 129 6.5.2. Systemic AdaptiveMachine Learning 132 6.5.3. Designingan AdaptiveApplication 135 6.5.4. Need ofAdaptiveLearningand Reasons for Adaptation 135 6.5.5. Adaptation Types 136 6.5.6. Adaptation Framework 139 6.6. CompetitiveLearningand AdaptiveLearning 140 6.6.1. Adaptation Function 142 6.6.2. DecisionNetwork 144 6.6.3. Representation ofAdaptiveLearning Scenario 145 6.7. Examples 146 6.7.1. Case Study: Text-Based AdaptiveLearning 147 6.7.2. AdaptiveLearning for DocumentMining 148 6.8. Summary 149 References 149 7 Multiperspectiveand Whole-System Learning 151 7.1. Introduction 151 7.2. MultiperspectiveContextBuilding 152 7.3. MultiperspectiveDecision Making andMultiperspective Learning 154 7.3.1. Combining Perspectives 155 7.3.2. InfluenceDiagram and Partial Decision Scenario Representation Diagram 156 www.it-ebooks.info CONTENTS xi 7.3.3. RepresentativeDecision Scenario Diagram (RDSD) 160 7.3.4. Example:PDSRD Representations for City InformationCapturedfrom Different Perspectives 160 7.4. Whole-System Learning and MultiperspectiveApproaches 164 7.4.1. IntegratingFragmented Information 165 7.4.2. MultiperspectiveandWhole-System Knowledge Representation 165 7.4.3. What Are MultiperspectiveScenarios? 165 7.4.4. ContextinParticular 166 7.5. Case Study Based onMultiperspectiveApproach 167 7.5.1. Traffic Controller Based onMultiperspective Approach 167 7.5.2. MultiperspectiveApproachModel for Emotion Detection 169 7.6. Limitations toaMultiperspectiveApproach 174 7.7. Summary 174 References 175 8 IncrementalLearning and Knowledge Representation 177 8.1. Introduction 177 8.2. WhyIncremental Learning? 178 8.3. Learning fromWhat Is Already Learned.. . 180 8.3.1. Absolute Incremental Learning 181 8.3.2. SelectiveIncremental Learning 182 8.4. Supervised Incremental Learning 191 8.5. Incremental Unsupervised Learningand Incremental Clustering 191 8.5.1. Incremental Clustering: Tasks 193 8.5.2. Incremental Clustering: Methods 195 8.5.3. Threshold Value 196 8.6. Semisupervised Incremental Learning 196 8.7. Incremental and Systemic Learning 199 8.8. Incremental Closeness Value and Learning Method 200 8.8.1. Approach 1for Incremental Learning 201 8.8.2. Approach 2 202 8.8.3. Calculating C Values Incrementally 202 8.9. Learning andDecision-MakingModel 205 8.10. Incremental Classification Techniques 206 8.11. Case Study: Incremental DocumentClassification 207 8.12. Summary 208 www.it-ebooks.info

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.