ebook img

Regression Modeling with Actuarial and Financial Applications (International Series on Actuarial Science) PDF

585 Pages·2009·4.34 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Regression Modeling with Actuarial and Financial Applications (International Series on Actuarial Science)

P1:IrP Trim:6.875in×9.75in Top:0.5in Gutter:0.75in CUUS812-FM cuus812/Frees 9780521760119 October12,2009 10:0 This page intentionally left blank P1:IrP Trim:6.875in×9.75in Top:0.5in Gutter:0.75in CUUS812-FM cuus812/Frees 9780521760119 October12,2009 10:0 Regression Modeling with Actuarial and Financial Applications Statistical techniques can be used to address new situations. This is important in a rapidly evolving risk management and financial world. Analysts with a strong statisticalbackgroundunderstandthatalargedatasetcanrepresentatreasuretrove ofinformationtobeminedandcanyieldastrongcompetitiveadvantage. This book provides budding actuaries and financial analysts with a foundation in multiple regression and time series. Readers will learn about these statistical techniques using data on the demand for insurance, lottery sales, foreign exchange rates, and other applications. Although no specific knowledge of risk management or finance is presumed, the approach introduces applications in which statistical techniquescanbeusedtoanalyzerealdataofinterest.Inadditiontothefundamentals, this book describes several advanced statistical topics that are particularly relevant to actuarial and financial practice, including the analysis of longitudinal, two-part (frequency/severity),andfat-taileddata. Datasets with detailed descriptions, sample statistical software scripts in R and SAS,andtipsonwritingastatisticalreport,includingsampleprojects,canbefound onthebook’sWebsite:http://research.bus.wisc.edu/RegActuaries. P1:IrP Trim:6.875in×9.75in Top:0.5in Gutter:0.75in CUUS812-FM cuus812/Frees 9780521760119 October12,2009 10:0 P1:IrP Trim:6.875in×9.75in Top:0.5in Gutter:0.75in CUUS812-FM cuus812/Frees 9780521760119 October12,2009 10:0 INTERNATIONAL SERIES ON ACTUARIAL SCIENCE ChristopherDaykin,IndependentConsultantandActuary AngusMacdonald,Heriot-WattUniversity The International Series on Actuarial Science, published by Cambridge University PressinconjunctionwiththeInstituteofActuariesandtheFacultyofActuaries,will contain textbooks for students taking courses in or related to actuarial science, as wellasmoreadvancedworksdesignedforcontinuingprofessionaldevelopmentor for describing and synthesizing research. The series will be a vehicle for publish- ing books that reflect changes and developments in the curriculum, that encourage the introduction of courses on actuarial science in universities, and that show how actuarialsciencecanbeusedinallareasinwhichthereislong-termfinancialrisk. P1:IrP Trim:6.875in×9.75in Top:0.5in Gutter:0.75in CUUS812-FM cuus812/Frees 9780521760119 October12,2009 10:0 Thereisanoldsaying,attributedtoSirIssacNewton: “IfIhaveseenfar,itisbystandingontheshouldersofgiants.” I dedicate this book to the memory of two giants who helped me, and everyonewhoknewthem,seefartherandlivebetterlives: JamesC.Hickman and JosephP.Sullivan. P1:IrP Trim:6.875in×9.75in Top:0.5in Gutter:0.75in CUUS812-FM cuus812/Frees 9780521760119 October12,2009 10:0 Regression Modeling with Actuarial and Financial Applications EDWARD W. FREES UniversityofWisconsin,Madison CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521760119 © Edward W. Frees 2010 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2009 ISBN-13 978-0-511-67528-7 eBook (NetLibrary) ISBN-13 978-0-521-76011-9 Hardback ISBN-13 978-0-521-13596-2 Paperback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. P1:IrP Trim:6.875in×9.75in Top:0.5in Gutter:0.75in CUUS812-FM cuus812/Frees 9780521760119 October12,2009 10:0 Contents Preface pagexiii 1 RegressionandtheNormalDistribution 1 1.1 WhatIsRegressionAnalysis? 1 1.2 FittingDatatoaNormalDistribution 3 1.3 PowerTransforms 7 1.4 SamplingandtheRoleofNormality 8 1.5 RegressionandSamplingDesigns 10 1.6 ActuarialApplicationsofRegression 12 1.7 FurtherReadingandReferences 13 1.8 Exercises 14 1.9 TechnicalSupplement–CentralLimitTheorem 18 PartI LinearRegression 2 BasicLinearRegression 23 2.1 CorrelationsandLeastSquares 23 2.2 BasicLinearRegressionModel 29 2.3 IstheModelUseful?SomeBasicSummaryMeasures 32 2.4 PropertiesofRegressionCoefficientEstimators 35 2.5 StatisticalInference 37 2.6 BuildingaBetterModel:ResidualAnalysis 41 2.7 Application:CapitalAssetPricingModel 46 2.8 IllustrativeRegressionComputerOutput 51 2.9 FurtherReadingandReferences 54 2.10 Exercises 54 2.11 TechnicalSupplement–ElementsofMatrixAlgebra 62 3 MultipleLinearRegression–I 70 3.1 MethodofLeastSquares 70 3.2 LinearRegressionModelandPropertiesofEstimators 76 3.3 EstimationandGoodnessofFit 81 3.4 StatisticalInferenceforaSingleCoefficient 85 3.5 SomeSpecialExplanatoryVariables 92 3.6 FurtherReadingandReferences 100 3.7 Exercises 101 vii P1:IrP Trim:6.875in×9.75in Top:0.5in Gutter:0.75in CUUS812-FM cuus812/Frees 9780521760119 October12,2009 10:0 viii Contents 4 MultipleLinearRegression–II 107 4.1 TheRoleofBinaryVariables 107 4.2 StatisticalInferenceforSeveralCoefficients 113 4.3 OneFactorANOVAModel 120 4.4 CombiningCategoricalandContinuousExplanatoryVariables 126 4.5 FurtherReadingandReferences 133 4.6 Exercises 133 4.7 TechnicalSupplement–MatrixExpressions 138 5 VariableSelection 148 5.1 AnIterativeApproachtoDataAnalysisandModeling 148 5.2 AutomaticVariableSelectionProcedures 149 5.3 ResidualAnalysis 153 5.4 InfluentialPoints 160 5.5 Collinearity 165 5.6 SelectionCriteria 171 5.7 Heteroscedasticity 175 5.8 FurtherReadingandReferences 179 5.9 Exercises 180 5.10 TechnicalSupplementsforChapter5 182 6 InterpretingRegressionResults 189 6.1 WhattheModelingProcessTellsUs 190 6.2 TheImportanceofVariableSelection 196 6.3 TheImportanceofDataCollection 198 6.4 MissingDataModels 205 6.5 Application:RiskManagers’Cost-Effectiveness 209 6.6 FurtherReadingandReferences 218 6.7 Exercises 219 6.8 TechnicalSupplementsforChapter6 222 PartII TopicsinTimeSeries 7 ModelingTrends 227 7.1 Introduction 227 7.2 FittingTrendsinTime 229 7.3 StationarityandRandomWalkModels 236 7.4 InferenceUsingRandomWalkModels 238 7.5 FilteringtoAchieveStationarity 243 7.6 ForecastEvaluation 245 7.7 FurtherReadingandReferences 248 7.8 Exercises 249 8 AutocorrelationsandAutoregressiveModels 251 8.1 Autocorrelations 251 8.2 AutoregressiveModelsofOrderOne 254

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.