Astronomy&Astrophysicsmanuscriptno.Robaina˙Cepa˙2006 c ESO2008 (cid:13) February3,2008 Redshift–distance relations from type Ia supernova observations New constraints on grey dust models AdayR.Robaina1,2,⋆ andJordiCepa2,3 1 FacultaddeF´ısica,UniversidaddeLaLagunaE-38071,LaLaguna,Tenerife,Spain e-mail:[email protected] 7 2 InstitutodeAstrof´ısicadeCanariasE-38200LaLaguna,Tenerife,Spain 0 3 DepartamentodeAstrof´ısica,FacultaddeF´ısica,UniversidaddeLaLaguna.E-38071LaLaguna,Tenerife,Spain 0 e-mail:[email protected] 2 n Received28March2006;accepted03August2006 a J ABSTRACT 0 Extinctionduetointergalacticgreydusthasbeenproposedasanalternativetoacceleratedexpansiontoaccountforthedimmingof 1 SnIafluxesbeyondz 0.5.The“replenishing”greydustmodel,althoughfittingtheobservationaldata,doesnotseemtobebasedon physicalassumptions.≃Forthisreason,inthispaperweproposeanewgreydustmodelwhosedustdistributionfollowsthecomoving 2 SFRdensityevolution,areasonablyestablishedphenomenon.Thisnewmodeliscomparedwiththeupdatedphotometricdatasample v fromtheHighZSupernovaSearchTeam(HZT).Also,usingpairsofsupernovaeatdifferentredshifts,thepossibilityofany“patchy” 9 distributionproposedtoexplainthediscrepanciesbetweenthe“highz”dustmodelandtheSnIaobservationsatveryhighredshift 5 (z 0.9)isruledout.Finally,thedataarecomparedwithdifferentmodelswithandwithoutdarkenergyandabestfittoauniverse 2 wit≥hadimensionalparametersΩ = 0.31andΩ = 0.69isobtained,fromwhichanageoftheuniverseoft 14.6 109 years 1 isderived.Thisageiscompatiblem0withtheageofΛt0heglobularclustersusinganequationofstateω= 1andit0o≃bviates×theneedto 0 − resorttoanykindofphantomenergy. 7 0 Keywords. cosmology:distance–redshift–supernovae–dust / h p - 1. Introduction itseffectscanbefoundin,forexample,Bianchi&Ferrara2005; o Inoue&Kamaya2003;Nath,Sethi&Shchekinov1999). tr After the discovery by Riess et al.(1998) and Perlmutter et Inanycase,greydustmodelsimplyuniverseswithΩ =1 s al.(1999)oftheexcessiveweaknessoftypeIasupernovae(SnIa m0 a or non-Euclidean geometries. The first possibility can be dis- ) at high redshift, cosmology has undergonea revolution simi- : carded by the 2dF experiment(Peacock et al. 2001),while the v lartothecosmicmicrowavebackground(CMB)discovery.The secondcanberejectedbyanalysisoftheanisotropiesobserved i cosmologicalinterpretationoftheseobservationsledtothepos- X intheCMB(Spergeletal.2003),fromwhichatotalparameter tulation of the accelerated expansion of the universe as a con- Ω=1isderived. r a sequenceofa“darkenergy”ofnegativepressureandunknown Apart from grey dust models, another effect that could origin.Giventhedifficultphysicalinterpretationofthisdarken- hamper the need for an accelerated expansion universe to ex- ergy, either in terms of a cosmological constant, quintessence, plainSnIadataistheirluminosityevolution.Observationalevi- orevensomeformofphantomenergy,severalmechanismshave denceshowsSnIaluminosityvariationswith galacticmorphol- beenproposedtoexplainSnIaobservationswithoutresortingto ogy(Hamuyetal.1996,2000;Branchetal.1996;Reindletal. anacceleratedexpansion.Amongthemaremodelsofintergalac- 2005),whilesometheoreticalstudies(Hoflichetal.1998,2000) ticgreydust,whichtrytoexplainthedimmingoftheobserved suggest that SnIa luminosity could have some dependence on brightnessatz 0.5byassumingthatanabsorbentmediumex- redshift. Were this true, this would question the status of stan- ≃ ists in intergalacticspace whose extinctiondoesnotdependon dard candle for this kind of objects. In any case, these studies wavelength.Thesedustmodelshavebeendriventoevolveatthe arebeyondthescopeofthisarticleandaremerelymentionedas samerateasthedatasuppliedbySnIateams. further possibilities in addition to grey dust models in order to Thefirstmodels,proposedbyAguirre(1999a,1999b),were avoidacceleratedexpansion. based on both a model of dust formed by carbon needles and Inthispaperwepresentobservationalevidencetorefutethe a Draine & Lee dust model (Draine & Lee 1984), obtaining a high-zgrey dust modeleven in the case of patchydistribution. density parameter of ΩDust 10−5. Also, Goobar, Bergstrom Wealsoproposeanewgreydustmodelwithadensitydistribu- ∼ &Mortsell(2002)havedevelopedamodelofintergalacticdust tionfollowingthatofthestarformationrate(SFR)density.This whoseeffectsonthedistancemodulusvs.zareindistinguishable SFR-baseddistributionisbasedonobservationaldata,thusmak- fromthosecausedbyaΛCDMuniversewithΩm0 0.3,ΩΛ0 ingthegreydustmodelbasedonphysicalassumptionsthatbest ≃ ≃ 0.7(moreinformationontheintergalacticmediumamountand fits the supernova data. In Sect. 2 we give an overview of ex- istingtheoreticalgreydustmodels,includinghigh-zandthere- ⋆ Currently at the Max-Planck-Institut fu¨r Astronomie, Heidelberg, plenishinggreydust.InthissectionthenewSFR-baseddistribu- [email protected] tionmodelisalsodeveloped.InSect.3wederivethedust-free 2 AdayR.RobainaandJordiCepa:Redshift–distancerelationsfromtypeIasupernovaobservations modelbybest-fittingtheSnIadata,obtainingitsdensityparam- mechanismsforpreferentialejectionofgreydustfromthegalax- etersandtheageoftheuniverse,andcomparethedatawithdust ies and the temporal scale on which it could have been homo- models, includingthe one developedhere. We also explorethe geneously distributed, are explained. They are partly corrobo- possibilityofreconcilingtheobservationaldatawiththehigh-z rated by the work of Renzini (1997) on the metallicity of the dust modelby means of a patchydust distribution. Finally, we intracumular gas. Nevertheless, it is difficult to explain how a drawourconclusionsinSect.4. dustdistributionformedbybaryonicmattercanescapefromthe baryoniclarge-scalestructuresobservedintheuniverse.Aguirre himself(1999a)suggeststhatthestudyofsystematicdifferences 2. Theoreticalmodels betweenthefluxreceivedfromSnIahostedbyfieldandcluster galaxiescoulddistinguishbetweenauniverseinacceleratedex- The existenceof greydustwould havean enormousimpacton pansionandaneffectduetogreydust,respectively,byrestricting the analysis of the High Z SupernovaSearch Team (HZT) and implicitlythehomogenitytotheintracumularspace. the Supernova Cosmology Project (SCP) observations, return- ingthestandardmodeloftheuniversetothepointwhereitwas before1998withtheircontradictionsoftheCMBanisotropyex- 2.2.Replenishinggreydust periments, which point to a flat universe (Ω = 1). This is the Asdifferentsurveysreachedmoreandmoredistantredshifts,it reasonadetailedstudyofthedifferentpossibilitiesisrequired. becameevidentthatthehigh-zdustmodelwasunabletoexplain Anyintergalacticdustmodelproducinggreyextinctionrel- the data. However, the reasonable values obtained by Aguirre evanttothestudyofSnIaobservationsmusthavethefollowing (1999a,1999b)forthe timescale ofthe expulsionmechanisms characteristics: ofhisgrainmodelshavepromotedthebirthofnewmodelsthat fitthedatamuchbetter.Agoodexampleisthereplenishinggrey 1. Large grain size, to account for the achromaticy of the ab- dustmodel,proposedbyGoobar,Bergstrom&Mortsell(2002), sortion and to comply with the mechanism of preferential whosematchtothedataisatleastasgoodastheΩ ,0models. Λ destructionofsmallersizegrains(Aguirre1999b). This replenishing grey dust model is based on a grey dust 2. An efficient expulsion mechanism in the galaxy where the extinctionthatfollowsadensitydistributionoftheform: grainsareformed.Itmustexplainwhyonlythistypeofdust ρ =ρo (1+z)a, (2) isfoundintheIGM. dust dust 3. Coherencewiththeexpectedmetallicityoftheintergalactic where medium. 3 ifz<0.5 4. Thedustdistributionmustbebasedona hypothesisin turn a= basedonreasonablyestablishedphysicalobservables. (0 ifz>0.5. Thismodelrequiresextremelyefficientformationandexpulsion of the dust in the range z > 0.5 so that the dilution due to the 2.1.High-zgreydust expansionof the universe is exactly compensatedby the metal Even though Aguirre’s (1999a, 1999b) high-z dust model im- formationingalaxiesanditsfurtherremoval.However,thisbe- pliesauniformdustdistributionsimilartothatofnon-relativistic haviourisnotconsistentwiththecurrentknowledgeoftheover- matter, allstarformationepisodesthattookplaceintheuniverse.Asa consequence,a physicalexplanationofthisreplenishingmech- ρ =ρ0 (1+z)3, (1) anism is still lacking. Moreover, the hitherto unjustified sharp dust dust transition from a = 0 to a = 3 represents a dramatic end of metalformationandexpulsionfromthegalaxywithoutatransi- which fulfils the first three of the four requirementsmentioned tionera. above,thelatestresultspublishedbytheHZT(Riessetal.2004), withSnIadatabeyondz=1.5,almostcertainly(atthe4σlevel) reject the possibility of this high-zdust model. Figure 1 shows 2.3.SFR-basedmodel the largedeviationof the Aguirre (1999a,1999b)modelin the To avoid these features of the replenishing dust model, a grey high-zregioncomparedtotheexperimentaldataandthebestfit. dustmodelbasedonthestar formationrate(SFR)densityevo- However a patchy dust distribution could render this con- lutionisproposedhere.Itwillbeshownthattheproposedmodel clusion unsound. If the intergalactic dust distribution were not fits the existing SnIa data equally well, while at the same time homogeneous,itmightbepossiblethatthelightcomingfroman providinga dustproductionbased onthecurrentknowledgeof SnIaathighredshift(z 0.9)propagatesthroughmoreorless ≥ starformationevolutionintheuniverse. absorbentmedium,dependingonthesourcepositioninthesky. FollowingtheresultscompiledbyTaniguchietal.(2005)on The deviation of the observeddata fromthe high-zdust model the comoving SFR density evolution (Figure 2), it can be ob- would then be due to a bias produced by the grey dust, leav- served that the comoving SFR density (ρc ) is approximately ingthemagnitudeoftheabsorbedsupernovaebelowthedetec- SFR constantintherange1 z 2.Intheregion0<z<1,theSFR tionlimitofcurrenttelescopes.Inthiscase,thesampleobserved ≤ ≤ densitymaybereasonablyrepresentedbyasimplerelationwith at very high redshiftwould belongto the groupof SnIa whose redshift,withlowerSFRatrecenttimes.Forsimplerdescription, optical path has not been very affected by the aforementioned theSFRdensitycurveisthenrepresentedbythesetworegimes. absortion, and for this reason its apparentbrightness would be For our purposes this simple parameterization is adequate, but higher than that inferred by supposing a completely homoge- seeOda&Totani2005formorecomplexparameterization. neousdustdistribution. Inthiscontext,thecomovingSFRdensityisrepresentedby The inhomogeneity in the grey dust distribution is a solid enough possibility to take it into account in spite of Aguirre’s 101+z if 0<z<1 ρc ∝ (1999a, 1999b) arguments. In his theoretical study, possible SFR (constant if 1<z<2. AdayR.RobainaandJordiCepa:Redshift–distancerelationsfromtypeIasupernovaobservations 3 10−1 3. Results 3.1.Cosmologicalconstraints ) −3 InthisworkwehaveusedthelatestpublishedHZTdata(Riess c p 10−2 et al. 2004; Strolger et al. 2004), since it represents the most M 1 significantsamplewithphotometricvaluestodate.Thissample −r hasgreatlybenefitedfromtheresultsoftheGreatObservatories y M Origins Deep Survey (GOODS) project, carried out using the 7 Advanced Camera for Surveys (ACS) on board the Hubble h0. 10−3 Space Telescope (HST). The SnIa classification in the groups ( R Gold, Silver, and Bronze used is explained in full detail by F ρS Strolgeretal.(2004).ThemostcertainclassificationistheGold class,characterisedbyaclearspectroscopicconfirmationofthe 10−4 supernovatype. 0 1 2 3 4 5 6 7 In this section, the observationaldata are fitted by a model composedofnon-relativisticmatteranddarkenergy,neglecting z the contributions of radiation and relativistic matter, which do Fig.1. Comoving ρ as function of redshift. Figure taken from not play a significant role in the universe in the redshift range SFR Taniguchietal.(2005) considered.The magnitudeused for the fit is based on the dis- tancemodulus, m M =5logD +25, (4) L − TheevolutionoftheSFRproperdensity(ρp )is SFR where m and M are the apparent and absolute magnitudes, re- spectively,andD istheluminositydistanceinMpc.Assuming z ρc (1+z)1/2 L ρp (z)∝ SFR· dz, (3) a flat geometry, as derived from the spectra of the CMB SFR Z a3 H anisotropies, we have obtained, via an χ2 criterion, the best fit zi 0· 0 with the parametersΩ = 0.31and Ω = 0.69,values simi- m0 Λ0 wherea isthescalefactoratpresentandthevaluetakenforH lar to those found in previousstudies (Riess et al. 1998, 2004; 0 0 is65kms 1Mpc 1. Perlmutter et al. 1999),and consistentwith those derivedfrom − − 2dFresults(Peacocketal.2001). Nevertheless,althoughthedustdensityderivesfromtheSFR These values are only indicative, given the fit dependence evolution,notall thedustescapesfromthegalaxytothe IGM. withtherejectingcriterion.InFigure2weshowtheHubbledi- Atleastafractionofthemetalsproducedwillberetainedinlow agramoftheentiresample,togetherwiththebestfitfound. mass stars that never reach the core collapse supernova phase and do not present strong stellar winds. An estimate of the re- tained metal fraction can be obtained from the Salpeter initial massfunction(Salpeter1955)from0.1 M to8 M .ThisSFR- baseddistributionwilltheninclude,asexpl⊙ainedab⊙ove,atransi- tionatz 1betweenthetworegimesofmaximumanddecreas- ≃ ingSFR: ρ0 √π Erfi √1+z√ln10 + 101+z√1+z ifz<1 ρdust ∝ dust1(cid:18)− 2ln103/2 (cid:16) (cid:17) ln10 (cid:19) ρ0dust2 23(1+z)3/2 ifz>1. (cid:16) (cid:17) Theconstantsρ0 ,andρ0 ,whichincludetheestimationof dust1 dust2 metals retained in low mass stars, must be fitted in the region (0 < z < 1) to match the expected deviation at z = 0.5, while they are chosen to guarantee the continuity of the curve in the regionz>1. Althoughthedustisproducedbythestarformation,therel- evantphysicalmagnitudetoevaluateistheopacity,nottheSFR. Theresultingextinctionisthendelayedwithrespecttodustpro- duction owing to the time interval elapsed from production to insertion into the IGM. This delay can be estimated from as- sumptionsforthevelocityoftheejecta. Fig.2. Hubblediagram.DistancemoduliofobservationalSnIadatavs z.OverplottedaretheΩ = 0.31,Ω = 0.69universe,whichisthe Inordertofulfiltheabove-mentionedrequirements,thisgrey m0 Λ0 bestfitforaflatcosmologyobtainedfromχ2statistics. dust model must present grain characteristics similar to those proposed in previous models, reproducing the expected values for R and absorptions (Goobar, Bergstrom & Mortsell 2002). v Finally,theinjectionmechanismandthepreferentialdestruction Itisworthnotingthatthesevaluesofmassanddark-energy of small size grains will be assumed to be those discussed by density parameters, assuming a Hubble constant of 65 km s 1 − Aguirre(1999b,2001). Mpc 1,yieldanageoftheuniversearoundt 14.6 109years − 0 ≃ × 4 AdayR.RobainaandJordiCepa:Redshift–distancerelationsfromtypeIasupernovaobservations asderivedusingCepa(2004),withtheconstraintω= 1forthe − equation of state of dark energy(i.e. a cosmologicalconstant). This result is very nearly compatible with the globular cluster ageof12.9 2.9GyfoundbyCarrettaetal.(2000)anditstimeof ± formation,withoutresortingtoa phantomenergy(Cepa2004), althoughtheerrormarginisstilltoolargetodeterminetheequa- tionofstateofthedarkenergy. 3.2.Thenewdustmodel The SnIa weakness at z 0.5 and their excess brightness at ≃ z > 0.5,representingthetransitionfromanacceleratedtoade- celerateduniverse,are best appreciatedby representingnotthe distancemodulibutthedistancemodulidifferenceswithrespect totheemptyMilne’suniverseinconstantexpansion. Thegreydustmodelsarerepresentedasthedistancemoduli of a flat universe with Ω = 1, Ω = 0, with an atenuation m0 Λ0 obtainedby Fig.3.AveragedSnIadataandtheoreticalmodelsshowingthemodu- z lusdifferenceofdistanceswithrespecttoauniverseinconstantexpan- ∆m = 2.5log exp C ρ (z)r(z)dz (5) dust − (cid:26) (cid:16) Z0 dust (cid:17)(cid:27) sion(Ω=0).Thehigh-zdustmodelisrejectedat4σ(dashedline).The bestfitisgivenbyanΩ =0.31,Ω =0.69universe(solidthinline) mo Λo withnogreydustcontribution.TheSFR-baseddustmodelrepresented wherer(z)isthecomovingdistancetravelledbytheSnIalight, takesintoaccountadelayof2.7Gybetweenthedustformationinthe ρ (z)isgivenbyequations(1),(2)or(3),andC isaconstant diskanditshomogeneousdistributionintheIGM. dust usedfordimensionalpurposes. In the case of the SFR-based dust model proposed in the 3.3.Furtherevidenceagainsthigh-zgreydust presentwork(3),itwillbenecessarytoincludeadelaybetween dustformationanditsincorporationintotheIGMtocontribute It might be argued that a non-homogeneous grey dust distri- totheobservedextinction.Toestimatethetimeintervalinwhich bution could produce the deviation from the experimentaldata the dust ejected could reach a homogeneousdistribution in the compared to Aguirre’s model. According to this hypothesis,at intraclusterspace,weassumeanexpulsionvelocityforthedust highredshiftsonlytheSnIawhoselineofsighttotheobserver grains of around 1000 km s 1, following Aguirre et al. (2001) passes through more voids (in other words: whose “beam” is − and Shustov & Vibe (1995). A delay of ∆t 3 109 years is emptier) can be observed,since the othersare too absorbedby obtained,implyingthatthehomogeneityofth≈edu×stproducedat thedust.Inthisway,distantSnIaarebrighterthanexpectedac- z 1isreachedaroundaredshiftof0.3<z<0.4. cordingtothehigh-zdustmodel,lyingsomewherebetweenthe ≃Figure3showsthedifferentuniversemodels,togetherwith high-zgreydustandtheΩm0 = 1model,wherethedatapoints theweightedaveragedata.Fromthisfigureitcanbeconcluded arelocated(Figure4). thatthehigh-zdustmodelcanbediscardedtoaconfidencelevel Toevaluatethefeasibilityofthishypothesis,theSnIasample of 4σ for a homogeneousdust distribution. Also, it can be ob- issearchedforclosepairsofSnIawith verydifferentredshifts, servedthatthedifferencesbetweentheΩ =0.31,Ω =0.69 in whichthe low z (z 0.5)memberof the pairis fainterthan m0 Λ0 ≃ universeandthereplenishingdustmodelarealmostnegligible. expectedfromtheMilnemodel,whilethehigh-zone(z 0.9) ≥ Finally, the differences between our model with respect to the isnot.Weresuchapairtobefound,itshouldbeconcludedthat SnIa data are smaller than 1σ. As discussed in 2, the advan- inhomogeneitiesinthehigh-zgreydustmodelcannotbedeemed tageofthenewmodelisthatthedustdistributio§nderivesfrom responsiblefortheobservedSnIadistancemodulusdistribution. currentobservationalevidence. Assuminga Robertson–Walkermetric, the angle subtended byanobjectinaflatuniverseis InFigure4theentiresampleofphotometricdatafromSnIa is shown superposed on the theoretical models considered so D (z) far. It can be seen that the error bars of individual photomet- θ= T , (6) D (z) ricdataincludeboththeSFR-baseddustandthe‘replenishing’ P dustmodels.Thismodelisquiteflexible:theambiguityincur- whereD isthetransversaldistanceandD theproperdistance. T P rentcosmicstarformationhistorystudies(expulsionvelocities, Fromthisequation,andassumingacosmologicalmodel,thean- delaytimesandSFRcurveparameterization)doesnothaveabig glecorrespondingtoatransversaldistancecanbeevaluated. impactonourresults,especiallyiftheconstantsareempirically Tominimizethe influenceofphotometricandmodelerrors fittedasexplainedinSect.2.3. whenapplyingthistest,itisconvenienttolookforapparentSnIa In all these universe models (the grey dust ones), we have pairsofverydifferentredshifts,ofwhichtheSnIaatlowzshow assumed a flat geometry with Ω = 1.0, but this assumption the highestbrightnessdimming.This maximumSnIa dimming m0 contradicts the results of 2dF (Peacock et al. 2001). For this isobservedaroundz = 0.5(Riessetal.1998,2004;Perlmutter reason we have also developed an open universe (Ω = 0.3, etal.1999).Assumingacharacteristicsizeof30Mpcforavoid, m0 Ω =0.0)withSFR-baseddustwhosedifferencesarelessthan theanglecorrespondingtothisdistanceatz=0.5willrepresent Λ0 1σ comparedto the SnIa data (Figure 5 ). The implicationsof the highest projected angular distance to search for a suitable thisopenuniversewillbediscussedinSect.4. pairtoapplythistest.Thisisaratherstringentrequirementsince AdayR.RobainaandJordiCepa:Redshift–distancerelationsfromtypeIasupernovaobservations 5 Fig.5. Differences withrespect to anempty universe. Theflat (thick line)andopen(dashedline)SFR-baseddustuniversemodelsarewithin the1σconfidencelevel. 1. The two members of the candidate pair have to be in the ranges0.35<z<0.65forthelowzandz 0.9forthehigh ≥ z, respectively. This requirement maximizes the difference inbrightnessofthepairmemberstoreducethecontribution fromphotometricerrorsasmuchaspossible. 2. For the same reason, the difference in redshift between the membersofthepairmustbe∆z 0.4. ≥ 3. Theangulardistanceontheskybetweenthetwomembersof thepairmustbelowerthanthevalueof 1degreeassumed ≃ inTable1. 4. Bothsupernovaemustbeclassifiedwiththemaximumcon- fidenceastypeIa.Thisrequirementrestrictsthesearchtothe Goldsample. ForsuchasmallSnIasample(157SnIa)itmightseemdif- Fig.4. Top: AsinFigure 3, but representing the whole SnIasample. ficulttofulfiltheserequirements.Luckily,thesystematicsearch TheSFR-baseddistributionfitsthedata withinthe error barsof indi- forhigh-zsupernovaehascentredonspecificregionsofthesky, vidualdata.Bottom:Detailofthe0<z<0.7region. mainlyontheGOODSprojectHDFNandCDFSfields.Thesky distribution of the SnIa sample is represented in Figure 6. The a void size of 30 Mpc is smaller than those found by Einasto whole sample is shown in the leftpanel, while on the rightthe et al. (1994). From their data, an average diameter of around SnIa found in the HDFN are shown, demonstrating the small distancesthatseparatetheSnIainthesedeeplystudiedregions. Φ 91Mpcisdeduced.InTable1,theanglescorresponding void ≃ Table2summarisestheresultsofourstudyfordifferentcos- to this distance at z = 0.5 for different models of universe are mologies.Here,alltheSnIaat0.35 z 0.65thataremembers shown. ≤ ≤ ofapairareweakerthanexpectedinanemptyuniverse.Arela- tivelylargenumberofpairsisfound,consideringthatthewhole Ω Ω θ sampleiscomposedbyonly186SnIa. m0 Λ0 0.3 0.0 0.9502 0.3 0.7 0.8451 4. Conclusions 1.0 0.0 1.0155 WiththeavailableSnIadatawehavecalculatedthebest-fitdust- Table1.Valuesfortheangle(indegrees)subtendedbyaD of30Mpc T freeuniversemodel,obtainingΩ = 0.31,Ω = 0.69.These atz = 0.5indifferentuniverses,withtheassumedHubbleconstantof m0 Λ0 65kms 1Mpc 1. resultsareverysimilartothosefoundinpreviousstudiesoflu- − − minositydistancetotypeIasupernovae,leadingtoareconcilia- tionoftheageofglobularclusterswith theageoftheuniverse (t 14.6 109years,asderivedfromthemodel,whenassum- 0 ≃ × Withthesehypotheses,therequirementstoapplythistestto ingacosmologicalconstant-likedarkenergy,ω= 1).Phantom − supernovaepairsarethefollowing: energiescanthusbeavoided,aslongasthemeanvaluesdonot 6 AdayR.RobainaandJordiCepa:Redshift–distancerelationsfromtypeIasupernovaobservations Fig.6.LocationontheskyoftheSnIasample.Left:Positionofallthesupernovaeinthesample.Right:DetailoftheHubbleDeepFieldNorth region.Theunitsontheaxisaredegrees. Ωm0 ΩΛ0 z1 z2 Angle Gold(A) Silver(B) galaxies are underestimated by 20%, a parameter Ωm0 = 1 is excludedfromtheacceptablemargins.Forthisreasonwe have 0.3 0.0 0.35-0.65 0.9 θ 15 5 includedan open modelΩ = 0.3, Ω = 0.0 with our SFR- ≥ m0 Λ0 0.3 0.0 0.35-0.65 0.9 θ/2 15 3 based grey dust attenuation. Although the confidence level of ≥ 0.3 0.7 0.35-0.65 0.9 θ 15 5 ≥ this model with respect to the SnIa data is below 1σ, it intro- 0.3 0.7 0.35-0.65 0.9 θ/2 15 2 ≥ duces a serious conflict with the interpretation of the WMAP 1.0 0.0 0.35-0.65 0.9 θ 15 5 ≥ results (Spergel et al. 2003). To reconcile this model with the 1.0 0.0 0.35-0.65 0.9 θ/2 15 3 ≥ CMBanisotropiesexperimentitisnecessarytoresorttoexotic Table2.NumberofSnIapairsfoundwithanangulardistancebetween mechanisms, such as thermalization of the radiation due to the memberslowerthantheangleθgivenbyTable1forthecorresponding intracumulardustathighz. cosmology.A:PairsinwhichbothmembersbelongtotheGoldsample. The high-z dust model is rejected out to 4σ even if the B:AtleastoneofthemembersbelongtotheSilversample. grey dust presents a patchy distribution, as shown by the pair test devised here. However, most of the data at very high red- shift corresponds to GOODS fields, which cover a small area on the sky (Figure 5). Pairs at other positions on the sky com- increase.However,theuncertaintiesintheageofglobularclus- bined with high-accuracyphotometrywould allow us to ascer- ters are still too greatto constrainthe equationof state of dark tain whetherthereis anysignificantamountofgreydustin the energy. universe. Nevertheless, the consistency of the standard model A new grey dust model based on replenishing dust but in- and the weak basis for the alternative explanations makes the cluding the observed comoving SFR density distribution has possibilityofhavinganopenmodeldescribingouruniversedif- been derived, thereby providing an alternative model based on ficult. observational evidence. The extinction produced by this new SFR-based grey dust with Ωm0 = 1.0 is very close to the Acknowledgements. WewishtothankG.A.Tammann,A.TortosaAndreu,and Ω = 0.31,Ω = 0.69modelwithnoextinction.Apartfrom A. M. Snchez Quintana for helpful comments. This work was supported by m0 Λ0 the difficulties in providing the mass required for a flat uni- theSpanishPlanNacionaldeAstronom´ıayAstrof´ısicaundergrantAYA2005- 04149. This research made use of HZT SnIa photometric data, NASA’s verseandtheageconflictarisingtherefrom,themodelswouldbe Astrophysics Data System (ADS),and the Nasa/IPAC Extragalactic Database distinguishedonly by future supernovaesurveysat high z with (NED). higherphotometricaccuracy,suchasthosetobecarriedupwith SNAP (Supernova Acceleration Probe) (Aldering et al. 2002) and with the JWST (James Webb Space Telescope, Stockman References etal.1998),whichcouldprovidetheevidencethatwillhelpto AguirreA.N.1999a,ApJ,512,L19 decidebetweenacurrentlydarkenergy-dominateduniverseand AguirreA.N.1999b,ApJ,525,583 amatter-dominatedone.Moreover,thenextgenerationSnIasur- AguirreA.N.etal.2001,ApJ,561,521 veys,withmoreaccuratedata,willbeessentialbecausetheun- BianchiS.&FerraraA.2005,MNRAS,358,379 AlderingG.etal.2002,astro-ph/0209550 certainties in the current SnIa data, due to the contributionsof BranchD.,RomanishinW.&BaronE.1996,ApJ,465,73.Erratum467 approximations,photometric errors, luminosity maximumesti- CepaJ.2004,A&A,422,831 mationsathighz,etc.,imposeseveralrestrictionsonthevalidity delPopoloA.2003,A&A,408,43 ofthecosmologicalresults.Onlywhencombinedwithotherex- DraineB.&LeeH.1984,ApJ,285,89 Einasto,M.etal.1994,MNRAS,269,301 perimentssuchasCMBanisotropiesorgravitationallensesisit FujitaS.etal.2003,ApJ,586,L115 possibletoderivemorestringentconclusions. GoobarA.,BergstromL.&MortsellE.2002,A&A,384,1 All the flat grey dust models presented here consider HamuyM.etal.1996a,AJ,112,2391 Euclidean geometry with an adimensional mass parameter, HamuyM.etal.2000,AJ,120,1479 Ω = 1,ahypothesisagainstthedataobtainedsofar(Peacock HoflichP.etal.1998LIACo,34,243 m0 HoflichP.,NomotoK.,Umeda,H.&WheelerJ.C.2000,ApJ,528,590 et al. 2001). Even with the results of del Popolo (2003), who InoueA.K.&KamayaH.2003,MNRAS,341,L7 hassuggestedthatcurrentΩm0 valuesobtainedfromclustersof NathB.B.,SethiS.K.&ShchekinovY.1999,MNRAS,303,1 AdayR.RobainaandJordiCepa:Redshift–distancerelationsfromtypeIasupernovaobservations 7 OdaT.&TotaniT.2005,ApJ,630,59 PeacockJ.A.etal.2001,Nature,410,169 PerlmutterS.etal.1999,ApJ,517,565 ReindlB.,TammannG.A.,SandageA.&SahaA.2005astro-ph/0501664 Renzini,A.1997,ApJ,488,35 RiessA.G.etal.1998,AJ,116,1009 RiessA.G.etal.2004,ApJ,607,665 SalpeterE.E.1955,ApJ,121,161 ShustovB.&VibeD.1995,Astron.Rep.,39,578 SpergelD.N.etal.2003,ApJS,148,175 StockmanH.S.etal.1998,ASPC,133,24S StrolgerL.G.etal.2004,ApJ,613,200 TaniguchiY.etal.2005,astro-ph/0407542