ebook img

Recrystallization and Related Annealing Phenomena, Second Edition PDF

605 Pages·2004·12.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Recrystallization and Related Annealing Phenomena, Second Edition

RECRYSTALLIZATION AND RELATED ANNEALING PHENOMENA SECONDEDITION ElsevierInternetHomepage:http://www.elsevier.com ConsulttheElsevierhomepageforfullcatalogueinformationonallbooks,journalsandelectronic productsandservices. Titles ofRelatedInterest Books BEVER EncyclopediaofMaterialsScienceandEngineering 8-VolumeSet BLOOR,BROOK,FLEMING&MAHAJAN TheEncyclopediaofAdvancedMaterials 4-VolumeSet CAHN EncyclopediaofMaterialsScienceandEngineering SupplementaryVolumes1,2&3 CAHN TheComingofMaterials RelatedJournals Freespecimencopygladlysentonrequest.ElsevierLtd,TheBoulevard,LangfordLane,Kidlington, Oxford,OX51GB,UK ActaMetallurgicaetMaterialia Calphad JournalofPhysicsandChemistryofSolids MaterialsResearchBulletin ProgressinCrystalGrowthandCharacterizationofMaterials ScriptaMetallurgicaetMaterialia MaterialsScienceandEngineering-A JournalofAlloys&Compounds ReferenceWork TheEncyclopediaofMaterials:ScienceandTechnology ToContactthePublisher Elsevier welcomes enquiries concerning publishing proposals: books, journal special issues, conference proceedings, etc. All formats and media can be considered. Should you have a publishing proposal you wish to discuss, please contact, without obligation, the publisher responsibleforElsevier’sMaterialsSciencepublishingprogramme: DavidSleeman PublishingEditor ElsevierLtd TheBoulevard,LangfordLane Phone: +441865843178 Kidlington,Oxford Fax: +441865843920 OX51GB,UK E-mail:[email protected] General enquiries, including placing orders, should be directed to Elsevier’s Regional Sales Offices–pleaseaccesstheElsevierhomepageforfullcontactdetails(homepagedetailsatthetopof thispage). RECRYSTALLIZATION AND RELATED ANNEALING PHENOMENA SECONDEDITION by F.J. HUMPHREYS University of Manchester Institute of Science and Technology, UK and M. HATHERLY University of New South Wales, Australia 2004 Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo ELSEVIERLtd TheBoulevard,LangfordLane Kidlington,OxfordOX51GB,UK (cid:2)2004ElsevierLtd.Allrightsreserved. ThisworkisprotectedundercopyrightbyElsevier,andthefollowingtermsandconditionsapplytoitsuse: Photocopying Singlephotocopiesofsinglechaptersmaybemadeforpersonaluseasallowedbynationalcopyrightlaws.Permissionof thePublisherandpaymentofafeeisrequiredforallotherphotocopying,includingmultipleorsystematiccopying, copyingforadvertisingorpromotionalpurposes,resale,andallformsofdocumentdelivery.Specialratesareavailablefor educationalinstitutionsthatwishtomakephotocopiesfornon-profiteducationalclassroomuse. PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRightsDepartmentinOxford,UK:phone: (þ44)1865843830,fax:(þ44)1865853333,e-mail:[email protected] line via the Elsevier homepage (http://www.elsevier.com), by selecting ‘Customer Support’ and then ‘Obtaining Permissions’. In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 RosewoodDrive,Danvers,MA01923,USA;phone:(þ1)(978)7508400,fax:(þ1)(978)7504744,andintheUKthrough theCopyrightLicensingAgencyRapidClearanceService(CLARCS),90TottenhamCourtRoad,LondonW1P0LP, UK;phone:(þ44)2076315555;fax:(þ44)2076315500.Othercountriesmayhavealocalreprographicrightsagencyfor payments. DerivativeWorks Tablesofcontentsmaybereproducedforinternalcirculation,butpermissionofElsevierisrequiredforexternalresaleor distributionofsuchmaterial. PermissionofthePublisherisrequiredforallotherderivativeworks,includingcompilationsandtranslations. ElectronicStorageorUsage PermissionofthePublisherisrequiredtostoreoruseelectronicallyanymaterialcontainedinthiswork,includingany chapterorpartofachapter. Exceptasoutlinedabove,nopartofthisworkmaybereproduced,storedinaretrievalsystemortransmittedinanyform orbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,withoutpriorwrittenpermissionofthe Publisher. Addresspermissionsrequeststo:Elsevier’sScience&TechnologyRightsDepartment,atthephone,faxande-mail addressesnotedabove. Notice NoresponsibilityisassumedbythePublisherforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructionsorideascontained in the material herein. Because ofrapid advancesin the medicalsciences, in particular, independentverification of diagnosesanddrugdosagesshouldbemade. Firstedition:1995 Secondimpression(offirstedition):2002 Secondedition:2004 LibraryofCongressCataloginginPublicationData AcatalogrecordfromtheLibraryofCongresshasbeenappliedfor. BritishLibraryCataloguinginPublicationData AcataloguerecordfromtheBritishLibraryhasbeenappliedfor. ISBN:0080418848(CasedversionofFirstEdition) ISBN:0080426859(FlexiversionofFirstEdition) ISBN:0080441645(CasedversionofSecondEdition) ThepaperusedinthispublicationmeetstherequirementsofANSI/NISOZ39.48-1992(PermanenceofPaper). PrintedinTheNetherlands. CONTENTS Colour plates xvii Symbols xxi Abbreviations xxiii Preface to the first edition xxv Preface to the second edition xxvii Acknowledgements xxix CHAPTER 1 INTRODUCTION 1 1.1 The annealing of a deformed material 1 1.1.1 Outline and terminology 1 1.1.2 The importance of annealing 4 1.2 Historical perspective 4 1.2.1 The early development of the subject 4 1.2.2 Some key literature (1952–2003) 6 1.3 Forces, pressures and units 9 1.3.1 Pressure on a boundary 9 1.3.2 Units and the magnitude of the driving pressure 10 CHAPTER 2 THE DEFORMED STATE 11 2.1 Introduction 11 2.2 The stored energy of cold work 12 2.2.1 Origin of the stored energy 12 2.2.2 Measurements of overall stored energy 14 2.2.3 Relationship between stored energy and microstructure 16 2.3 Crystal plasticity 24 2.3.1 Slip and twinning 24 2.3.2 Deformation of polycrystals 25 v vi Contents 2.4 Cubic metals which deform by slip 26 2.4.1 The microstructural hierarchy 27 2.4.2 The evolution of the deformation microstructure in cell-forming metals 28 2.4.3 Non-cell-forming metals 35 2.5 Cubic metals which deform by slip and twinning 35 2.5.1 Deformation twinning 35 2.5.2 The effect of stacking fault energy 37 2.6 Close packed hexagonal (CPH) metals 39 2.7 Deformation bands 41 2.7.1 The nature of deformation bands 41 2.7.2 The formation of deformation bands 42 2.7.3 Transition bands 42 2.7.4 The conditions under which deformation bands form 42 2.8 Shear bands 44 2.8.1 Metals of medium or high stacking fault energy 44 2.8.2 Metals of low stacking fault energy 44 2.8.3 The formation of shear bands 47 2.8.4 The conditions for shear banding 47 2.9 The microstructures of deformed two-phase alloys 48 2.9.1 Dislocation distribution in alloys containing deformable particles 50 2.9.2 Dislocation distribution in alloys containing non-deformable particles 52 2.9.3 Dislocation structures at individual particles 57 2.9.4 Deformation zones at particles 60 CHAPTER 3 DEFORMATION TEXTURES 67 3.1 Introduction 67 3.2 Deformation textures in face-centred cubic (FCC) metals 68 3.2.1 Pure metal texture 68 3.2.2 Alloy texture 72 3.3 Deformation textures in body-centred cubic (BCC) metals 74 3.4 Deformation textures in close packed hexagonal (CPH) metals 76 3.5 Fibre textures 78 3.6 Factors which influence texture development 79 3.6.1 Rolling geometry and friction 79 3.6.2 Deformation temperature 80 3.6.3 Grain size 81 3.6.4 Shear banding 82 3.6.5 Second-phase particles 82 3.7 Theories of deformation texture development 83 3.7.1 Macroscopic models 83 Contents vii 3.7.2 Recent models 86 3.7.3 The texture transition 86 CHAPTER 4 THE STRUCTURE AND ENERGY OF GRAIN BOUNDARIES 91 4.1 Introduction 91 4.2 The orientation relationship between grains 92 4.3 Low angle grain boundaries 95 4.3.1 Tilt boundaries 95 4.3.2 Other low angle boundaries 97 4.4 High angle grain boundaries 98 4.4.1 The coincidence site lattice 98 4.4.2 The structure of high angle boundaries 100 4.4.3 The energy of high angle boundaries 102 4.5 The topology of boundaries and grains 104 4.5.1 Two-dimensional microstructures 105 4.5.2 Three-dimensional microstructures 106 4.5.3 Grain boundary facets 108 4.5.4 Boundary connectivity 108 4.5.5 Triple junctions 109 4.6 The interaction of second-phase particles with boundaries 109 4.6.1 The drag force exerted by a single particle 109 4.6.2 The drag pressure due to a distribution of particles 112 CHAPTER 5 THE MOBILITY AND MIGRATION OF BOUNDARIES 121 5.1 Introduction 121 5.1.1 The role of grain boundary migration during annealing 121 5.1.2 The micro mechanisms of grain boundary migration 122 5.1.3 The concept of grain boundary mobility 123 5.1.4 Measuring grain boundary mobilities 124 5.2 The mobility of low angle grain boundaries 124 5.2.1 The migration of symmetrical tilt boundaries under stress 124 5.2.2 General low angle boundaries 126 5.3 Measurements of the mobility of high angle boundaries 134 5.3.1 The effect of temperature on grain boundary mobility in high purity metals 135 5.3.2 The effect of orientation on grain boundary migration in high purity metals 137 viii Contents 5.3.3 The influence of solutes on boundary mobility 145 5.3.4 The effect of point defects on boundary mobility 150 5.3.5 The scope of experimental measurements 153 5.4 Theories of the mobility of high angle boundaries 153 5.4.1 Theories of grain boundary migration in pure metals 153 5.4.2 Theories of grain boundary migration in solid solutions 160 5.5 The migration of triple junctions 165 5.5.1 Introduction 166 5.5.2 The importance of triple junction mobility 167 CHAPTER 6 RECOVERY AFTER DEFORMATION 169 6.1 Introduction 169 6.1.1 The occurrence of recovery 169 6.1.2 Properties affected by recovery 171 6.2 Experimental measurements of recovery 173 6.2.1 The extent of recovery 173 6.2.2 Measurements of recovery kinetics 174 6.3 Dislocation migration and annihilation during recovery 178 6.3.1 General considerations 178 6.3.2 The kinetics of dipole annihilation 179 6.3.3 Recovery kinetics of more complex dislocation structures 181 6.4 Rearrangement of dislocations into stable arrays 185 6.4.1 Polygonization 185 6.4.2 Subgrain formation 186 6.5 Subgrain coarsening 188 6.5.1 The driving force for subgrain growth 188 6.5.2 Experimental measurements of subgrain coarsening 189 6.5.3 Subgrain growth by boundary migration 193 6.5.4 Subgrain growth by rotation and coalescence 200 6.5.5 Recovery mechanisms and the nucleation of recrystallization 206 6.6 The effect of second-phase particles on recovery 207 6.6.1 The effect of particles on the rate of subgrain growth 208 6.6.2 The particle-limited subgrain size 210 CHAPTER 7 RECRYSTALLIZATION OF SINGLE-PHASE ALLOYS 215 7.1 Introduction 215 7.1.1 Quantifying recrystallization 217 7.1.2 The laws of recrystallization 220 Contents ix 7.2 Factors affecting the rate of recrystallization 221 7.2.1 The deformed structure 221 7.2.2 The grain orientations 225 7.2.3 The original grain size 227 7.2.4 Solutes 228 7.2.5 The deformation temperature and strain rate 229 7.2.6 The annealing conditions 229 7.3 The formal kinetics of primary recrystallization 232 7.3.1 The Johnson–Mehl–Avrami–Kolmogorov (JMAK) model 232 7.3.2 Microstructural path methodology 235 7.4 Recrystallization kinetics in real materials 239 7.4.1 Non-random spatial distribution of nuclei 239 7.4.2 The variation of growth rate during recrystallization 241 7.5 The recrystallized microstructure 248 7.5.1 The grain orientations 248 7.5.2 The grain size 248 7.5.3 The grain shape 249 7.6 The nucleation of recrystallization 250 7.6.1 Classical nucleation 250 7.6.2 Strain-induced grain boundary migration (SIBM) 251 7.6.3 The preformed nucleus model 257 7.6.4 Nucleation sites 259 7.7 Annealing Twins 261 7.7.1 Introduction 261 7.7.2 Mechanisms of twin formation 263 7.7.3 Twin formation during recovery 264 7.7.4 Twin formation during recrystallization 264 7.7.5 Twin formation during grain growth 266 CHAPTER 8 RECRYSTALLIZATION OF ORDERED MATERIALS 269 8.1 Introduction 269 8.2 Ordered structures 270 8.2.1 Nature and stability 270 8.2.2 Deformation of ordered materials 271 8.2.3 Microstructures and deformation textures 272 8.3 Recovery and recrystallization of ordered materials 274 8.3.1 L1 structures 275 2 8.3.2 B2 structures 278 8.3.3 Domain structures 279 8.4 Grain growth 280 8.5 Dynamic recrystallization 282 8.6 Summary 282

Description:
Related Annealing Phenomena fulfils the information needs of materials scientists in both industry and academia. The subjects treated in the book are all active research areas, forming a major part of at least four regular international conference series. This new 2nd edition ensures the reader has
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.