ebook img

Reciprocity Theorems for Bettin--Conrey Sums PDF

0.18 MB·
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reciprocity Theorems for Bettin--Conrey Sums

RECIPROCITY THEOREMS FOR BETTIN–CONREY SUMS 6 JUANS.AULI,ABDELMEJIDBAYAD,ANDMATTHIASBECK 1 0 DedicatedtothememoryofTomM.Apostol 2 g ABSTRACT. RecentworkofBettinandConreyontheperiodfunctionsofEisensteinseriesnaturallygaverise u totheDedekind-likesum A ca h = kak(cid:229)−1cot p mh z −a,m , k k k 3 (cid:18) (cid:19) m=1 (cid:18) (cid:19) (cid:16) (cid:17) wherea∈C,handkarepositivecoprimeintegers,andz (a,x)denotestheHurwitzzetafunction. Wederive ] anewreciprocitytheoremfortheseBettin–Conreysums,whichinthecaseofanoddnegativeintegeracanbe T explicitlygivenintermsofBernoullinumbers. This,inturn,impliesexplicitformulasfortheperiodfunctions N appearinginBettin–Conrey’swork.WestudygeneralizationsofBettin–Conreysumsinvolvingzetaderivatives . andmultiplecotangentfactorsandrelatethesetospecialvaluesoftheEstermannzetafunction. h t a m [ 1. INTRODUCTION AND STATEMENT OF RESULTS 2 OurpointofdepartureisrecentworkofBettinandConrey[7,8]ontheperiodfunctionsofEisensteinse- v ries. TheirinitialmotivationwasthederivationofanexactformulaforthesecondmomentsoftheRiemann 9 3 zetafunction, buttheirworknaturally gaverisetoafamilyoffinitearithmeticsumsoftheform 8 6 c h = kak(cid:229)−1cot p mh z −a,m , 0 a k k k 1. (cid:18) (cid:19) m=1 (cid:18) (cid:19) (cid:16) (cid:17) wherea∈C,handkarepositivecoprimeintegers, andz (a,x)denotes theHurwitzzetafunction 0 16 z (a,x) = (cid:229)¥ 1 , : (n+x)a v n=0 i initially defined for ´ (a)>1and meromorphically continued to the a-plane. Wecall c (h)and its natural X a k generalizations appearing belowBettin–Conrey sums. r a Therearetwomajormotivationstostudythesesums. Thefirstisthatc (h)isessentiallyaVasyuninsum, 0 k which in turn makes a critical appearance in the Nyman–Beurling–Ba´ez-Duarte approach to the Riemann hypothesis through the twisted mean-square of the Riemann zeta function on the critical line (see, e.g., [5,16]). Bettin–Conrey’s work,fora=0,impliesthatthereisahiddensymmetryofthismean-square. The second motivation, and the central theme of our paper, is that the Bettin–Conrey sums satisfy a reciprocity theorem: h k 1+a −k kaaz (1−a) c − c + a k h a h p h (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) Date:2August2016. 2010MathematicsSubjectClassification. Primary11F20;Secondary11L03,11M35. Keywordsandphrases. Dedekindsum,cotangentsum,Bettin–Conreysum,reciprocitytheorem,Hurwitzzetafunction,period function,quantummodularform,Estermannzetafunction. We thank Sandro Bettin for valuable comments, particularly for suggesting Theorem 3. Abdelmejid Bayad was partially supportedbytheFDIRoftheUniversite´d’EvryVald’Essonne;MatthiasBeckwaspartiallysupportedbytheUSNationalScience Foundation(DMS-1162638). 1 2 JUANS.AULI,ABDELMEJIDBAYAD,ANDMATTHIASBECK extends from its initiation domain Q to an (explicit) analytic function on C\R , making c nearly an ≤0 a example of a quantum modular form in the sense of Zagier [18]. In fact, Zagier’s “Example 0” is the Dedekindsum 1 k(cid:229)−1 p mh p m s(h,k) = cot cot , 4k k k m=1 (cid:18) (cid:19) (cid:16) (cid:17) whichis,uptoatrivialfactor, c (h). Dedekind sumsfirstappeared inthetransformation properties ofthe −1 k Dedekindetafunction andsatisfythereciprocity theorem [10,11] 1 1 h 1 k s(h,k)+s(k,h) = − + + + . 4 12 k hk h (cid:18) (cid:19) WenowrecallthepreciseformofBettin–Conrey’s reciprocity theorem. Theorem1(Bettin–Conrey [7]). Ifhandkarepositivecoprimeintegers then h k 1+a −k kaaz (1−a) h c − c + = −iz (−a)y a k h a h p h a k (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) where i z (1−a) i p a g (z) y (z) = − cot +i a a p z z (−a) z1+a 2 z (−a) and g (z) = −2 (cid:229) (−1)n B2n z (1−2n−a)(2p z)2n−1 a (2n)! 1≤n≤M 1 cosp a + z (s)z (s−a)G (s) 2 (2p z)−sds. p iZ(−21−2M) sinp s−2a Here B denotes the kth Bernoulli number, M is any integer ≥−1min(0,´ (a)), and the integral notation k 2 indicates thatourintegration pathisovertheverticalline´ (s)=−1−2M. 2 WenotethatBettinandConreyinitiallydefinedy (z)through a 1 1 y (z) = E (z)− E − , a a+1 za+1 a+1 z (cid:18) (cid:19) inotherwords,y (z)istheperiodfunction oftheEisenstein seriesofweight2k+2, a E (z) = 1+ 2 (cid:229) s (n)e2p inz, a+1 z (−a) a n≥1 wheres (n)=(cid:229) da,andthenshowedthaty (z)satisfiestheproperties ofTheorem1. a d|n a We have several goals. We start by showing that the right-hand side of Theorem 1 can be simplified by employinganintegration techniqueforDedekind-like sumsthatgoesbacktoRademacher[11]. Thisyields ourfirstmainresult: Theorem 2. Let ´ (a) > 1 and suppose h and k are positive coprime integers. Then for any 0 < e < min 1,1 , h k (cid:8) (cid:9) h k az (a+1) (hk)1−a cot(p hz)cot(p kz) h1−ac +k1−ac = − dz. −a k −a h p (hk)a 2i (e) za (cid:18) (cid:19) (cid:18) (cid:19) Z Theorem 2 implies the following analytic continuation result; in particular, in this sense Theorem 2 can beextendedtoallcomplexa. RECIPROCITYTHEOREMSFORBETTIN–CONREYSUMS 3 Theorem3. Lethandkarepositivecoprimeintegers. Thenforany0<e <min 1,1 ,thefunction h k cot(p hz)cot(p kz) (cid:8) (cid:9) F(a) = dz (e) za Z hasaholomorphic continuation tothewholecomplexplane. Second, we employ Theorem 2 to show that in the case that a is an odd negative integer, the right-hand sideofthereciprocity theorem canbeexplicitly givenintermsofBernoullinumbers. Theorem4. Letn>1beanoddinteger andsuppose handkarepositive coprimeintegers. Then h1−nc h +k1−nc k = 2p i n 1 nB +n(cid:229)+1 n+1 B B hmkn+1−m . −n −n n+1 m n+1−m k h hk i(n+1)! m (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) m=0(cid:18) (cid:19) ! Wenotethat,asfaraswecantell,thisidentitycannotbeeasilyderivedfromTheorem1. Ourthirdmain result is, in turn, a consequence of Theorem 4: in conjunction with Theorem 1, it implies the following explicitformulasfory (z)andg (z)whenaisanoddnegativeinteger. a a Theorem5. Ifn>1isanoddinteger thenforallz∈C\R ≤0 y (z) = (2p i)n n(cid:229)+1 n+1 B B zm−1 −n z (n)(n+1)! m m n+1−m m=0(cid:18) (cid:19) and g (z) = (2p i)n (cid:229) n n+1 B B zm. −n m+1 n−m i(n+1)! m+1 m=0(cid:18) (cid:19) In [7, Theorem 2], Bettin and Conrey computed the Taylor series of g (z) and remarked that, if a is a a negativeinteger,p g(m)(1)isarationalpolynomialinp 2. Theorem5generalizesthisremark. Wewillprove a Theorems2–5inSection2. Our next goal is to study natural generalizations of c (h). Taking a leaf from Zagier’s generalization of a k s(h,k) to higher-dimensional Dedekind sums [17] and its variation involving cotangent derivatives [9], let k ,k ,...,k be positive integers such that (k ,k )=1 for j=1,2,...,n, let m ,m ,...,m be nonnegative 0 1 n 0 j 0 1 n integers, a6=−1acomplexnumber,anddefinethegeneralized Bettin–Conrey sum c k0 k1 ··· kn = kak(cid:229)0−1z (m0) −a, l (cid:213) n cot(mj) p kjl . a(cid:18) m0 m1 ··· mn (cid:19) 0 l=1 (cid:18) k0(cid:19)j=1 (cid:18) k0 (cid:19) Herez (m0)(a,z)denotesthemth derivativeoftheHurwitzzetafunction withrespect toz. 0 Thisnotation mimicsthatofDedekindcotangent sums;notethat h k h c = c . s k s 0 0 (cid:18) (cid:19) (cid:18) (cid:19) In Section 3, we will prove reciprocity theorems for generalized Bettin–Conrey sums, paralleling Theo- rems2and4,aswellasmorespecialcasesthatgive,wethink, interesting identities. Ourfinalgoalistorelatetheparticular generalized Bettin–Conrey sum q−1 (cid:229) cot(k)(p mx)z −a,m q m=1 (cid:16) (cid:17) withevaluations oftheEstermannzetafunction (cid:229) s (n)e2pinx atintegers s;seeSection4. n≥1 a ns 4 JUANS.AULI,ABDELMEJIDBAYAD,ANDMATTHIASBECK 2. PROOFS OF MAIN RESULTS InordertoproveTheorem2,weneedtwolemmas. Lemma6. Letmbeanonnegative integer. Then ∓i ifm=0, limcot(m)p (x±iy) = y→¥ (0 ifm>0. Furthermore, thisconvergence isuniform withrespecttoxinafixedboundedinterval. Proof. Sincecotz= i(eiz+e−iz),wemayestimate eiz−e−iz 2 2 2 |i+cotp (x+iy)| = ≤ = . ei(2p x)−e2p y ei(2p x) −|e2p y| |1−e2p y| Giventhattherightmostterminthisin(cid:12)equality vanis(cid:12)hesa(cid:12)s(cid:12)y→¥ (cid:12),wesee(cid:12)that (cid:12) (cid:12) (cid:12)(cid:12) (cid:12) (cid:12) limcotp (x+iy) = −i. y→¥ Similarly,theinequality 2 2 2 |−i+cotp (x−iy)| = ≤ = ei(2p x)e2p y−1 ei(2p x)e2p y −1 |e2p y−1| impliesthatlimy→¥ cotp (x−iy)=i. Si(cid:12)nce (cid:12) (cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)(cid:12) (cid:12) (cid:12) 2ep y 2ep y 2ep y |cscp (x+iy)| = ≤ = , |eip x−e−ip xe2p y| ||eip x|−|e−ip xe2p y|| |1−e2p y| itfollowsthatlimy→¥ cscp (x+iy)=0. Similarly, 2ep y 2ep y 2ep y |cscp (x−iy)| = ≤ = |eip xe2p y−e−ip x| ||eip xe2p y|−|e−ip x|| |e2p y−1| impliesthatlimy→¥ cscp (x−iy)=0. Weremarkthat ddz(cotz)=−csc2zand d (cscz) = −csczcotz, dz soallthederivativesofcotzhaveacsczfactor, andtherefore, ∓i ifm=0, limcot(m)p (x±iy) = y→¥ (0 ifm>0. Since the convergence above is independent of x, the limit is uniform with respect to x in a fixed bounded interval. (cid:3) Lemma6impliesthat ∓i ifm=0, limcot(m)p h(x±iy) = limcot(m)p k(x±iy) = y→¥ y→¥ (0 ifm>0, uniformlywithrespecttoxinafixedbounded interval. TheproofofthefollowinglemmaishintedatbyApostol[3]. Lemma7. If´ (a)>1andR>0,thenz (a,x+iy)vanishesuniformlywithrespecttox∈[0,R]asy→±¥ . RECIPROCITYTHEOREMSFORBETTIN–CONREYSUMS 5 Proof. Webeginbyshowingthatz (a,z)vanishesas` (z)→±¥ if´ (z)>0. Since´ (a)>1and´ (z)>0, wehavetheintegral representation [14,eq.25.11.25] 1 ¥ ta−1e−zt z (a,z) = dt, G (a) 1−e−t 0 Z whichmaybewrittenas 1 ¥ ta−1e−t´ (z) (1) z (a,z) = e−it` (z)dt. G (a) 1−e−t 0 Z Notethatforfixed´ (z), ¥ ta−1e−t´ (z) dt = z (a,´ (z))G (a) 1−e−t 0 Z and ¥ ta−1e−t´ (z) ¥ t´ (a)−1e−t´ (z) dt = dt = z (´ (a),´ (z))G (´ (a)), 1−e−t 1−e−t 0 (cid:12) (cid:12) 0 Z Z (cid:12) (cid:12) sotheRiemann–Lebe(cid:12)sgue lemma(cid:12)(see,forexample,[13,Theorem16])impliesthat (cid:12) (cid:12) (cid:12) (cid:12) ¥ ta−1e−t´ (z) e−it` (z)dt 1−e−t 0 Z vanishes as ` (z)→±¥ . By (1), this means that for ´ (z) fixed, z (a,z) vanishes as ` (z)→±¥ . In other words,z (a,x+iy)→0pointwisewithrespect tox>0asy→±¥ . Moreover, the vanishing of z (a,x+iy) as y→±¥ is uniform with respect to x∈[0,R]. Indeed, denote g(t)= ta−1e−tR,then(1)impliesthat 1−e−t ¥ g(t)dt = G (a)z (a,R) 0 Z and ¥ |g(t)|dt = G (´ (a))z (´ (a),R). 0 It then follows from the Riemann–ZLebesgue lemma that lim|z|→¥ 0¥ g(t)e−itzdt =0. If x∈(0,R], we may write ¥ ta−1e−tx ¥R G (a)z (a,x±iy) = e∓itydt = g(t)e−it(±y−i(x−R))dt. 1−e−t 0 0 Z Z Sinceg(t)doesnotdependonx,thespeedatwhichz (a,x±iy)vanishesdependsonRandy2+(x−R)2. However,weknowthat0≤|x−R|<R,sothespeedofthevanishing dependsonlyonR. Finally,notethat ¥ ¥ z (a,iy) = (cid:229) 1 = (cid:229) 1 + 1 = z (a,1+iy)+ 1 , (iy+n)a (1+iy+n)a (iy)a (iy)a n=0 n=0 so z (a,iy)→0 as y→±¥ , and the speed at which z (s,iy) vanishes depends on that of z (s,1+iy). Thus, z (s,x+iy)→0uniformly asy→±¥ ,aslongasx∈[0,R]. (cid:3) ProofofTheorem2. TheideaistouseCauchy’sresiduetheorem tointegrate thefunction f(z) = cot(p hz)cot(p kz)z (a,z) alongC(M,e )asM→¥ ,whereC(M,e )denotes thepositively oriented rectangle withvertices 1+e +iM, e +iM,e −iM and1+e −iM,forM>0and0<e <min 1,1 (seeFigure1). h k Henceforth, a ∈ C is such that ´ (a) > 1, (h,k) is a pair of coprime positive intergers, and f(z) and C(M,e )areasabove,unlessotherwisestated. Sincez (a,z)(cid:8)isana(cid:9)lyticinsideC(M,e ),theonlypolesof f(z) 6 JUANS.AULI,ABDELMEJIDBAYAD,ANDMATTHIASBECK FIGURE 1. TheclosedcontourC(M,e ). arethose ofthecotangent factors. Thus,thefactthathandk arecoprimeimpliesthatacompletelistofthe possible polesof f(z)insideC(M,e )is 1 h−1 1 k−1 E = ,..., , ,..., ,1 h h k k (cid:26) (cid:27) and each of these poles is (at most) simple, with the exception of 1, which is (at most) double. For m∈ {1,2,...,h−1}, p km m 1 1 p km m Resf(z) = cot cos(p m)z a, Res = cot z a, . z=m h h z=m sin(p hz) p h h h h (cid:18) (cid:19) h (cid:18) (cid:19) (cid:16) (cid:17) (cid:16) (cid:17) Ofcourse,ananalogous resultistrueforResz=m f(z)forallm∈{1,2,...,k−1},andtherefore k (cid:229) Resf(z) = Resf(z)+ 1 h(cid:229)−1cot p km z a,m + 1 k(cid:229)−1cot p hm z a,m z0∈Ez=z0 z=1 p hm=1 (cid:18) h (cid:19) (cid:16) h(cid:17) p km=1 (cid:18) k (cid:19) (cid:16) k(cid:17) or,equivalently, (2) h1−ac h +k1−ac k = p (hk)1−a (cid:229) Resf(z) −Resf(z) . −a −a (cid:18)k(cid:19) (cid:18)h(cid:19) z0∈Ez=z0 ! z=1 ! RECIPROCITYTHEOREMSFORBETTIN–CONREYSUMS 7 Wenowdetermine Res f(z). TheLaurentseriesofthecotangent function about0isgivenby z=1 1 1 1 2 cotz = − z− z3− z5+···, z 3 45 945 so,bytheperiodicity ofcotz,forz6=1inasmallneighborhood ofz=1, 1 1 p k (p k)3 2(p k)5 cot(p kz) = − (z−1)− (z−1)3− (z−1)5+··· p k z−1 3 45 945 (cid:18) (cid:19) and,similarly, 1 1 p h (p h)3 2(p h)5 cot(p hz) = − (z−1)− (z−1)3− (z−1)5+···. p h z−1 3 45 945 (cid:18) (cid:19) Sincez (a,z)isanalytic inasmallneighborhood of1,Taylor’stheoremimpliesthat ¥ z (a,z)= (cid:229) b (z−1)n, n n=0 where b = z (n)(a,1) for n=0,1,2,... (derivatives relative to z). Thus, the expansion of f(z) about 1 is of n n! theform 2 b 1 b 1 0 1 + +(analyticpart). p 2hk z−1 p 2hk z−1 (cid:18) (cid:19) (cid:18) (cid:19) Giventhata6=0,1,weknowthat ¶ z (a,z)=−az (a+1,z)[14,eq.25.11.17], sob =−az (a+1,1)= ¶ z 1 −az (a+1). Weconclude thatRes f(z)=−az (a+1) anditthenfollowsfrom(2)that z=1 p 2hk (3) h1−ac h +k1−ac k = az (a+1)+ p (cid:229) Resf(z). −a(cid:18)k(cid:19) −a(cid:18)h(cid:19) p (hk)a (hk)a−1z0∈Ez=z0 (cid:229) We now turn to the computation of Resf(z) via Cauchy’s residue theorem, which together with (3) z0∈Ez=z0 willprovide thereciprocity weare after. Notethat thefunction f(z) isanalytic onanytwoclosed contours C(M ,e )andC(M ,e )and since the poles inside these twocontours arethe same, wemayapply Cauchy’s 1 2 residuetheorem tobothcontours anddeducethat f(z)dz = f(z)dz. ZC(M1,e) ZC(M2,e) Inparticular, thisimpliesthat (4) lim f(z)dz = 2p i (cid:229) Resf(z). M→¥ ZC(M,e) z0∈Ez=z0 Letg bethepathalongC(M,e )from1+e +iMtoe +iM. Similarly,defineg frome −iMto1+e −iM, 1 2 g frome +iM toe −iM,andg from1+e −iM to1+e +iM (seeFigure1). Since´ (a)>1, 3 4 ¥ ¥ z (a,z+1) = (cid:229) 1 = (cid:229) 1 = z (a,z)− 1 , (n+z+1)a (n+z)a za n=0 n=1 andsotheperiodicity ofcotzimpliesthat cot(p hz)cot(p kz) f(z)dz = − f(z)dz+ dz. g g g za Z 4 Z 3 Z 3 8 JUANS.AULI,ABDELMEJIDBAYAD,ANDMATTHIASBECK Lemmas6and7implythat f(z)vanishesuniformlyasM→¥ (uniformitywithrespectto´ (z)∈[e ,1+e ]) so lim f(z)dz = 0 = lim f(z)dz. M→¥ g M→¥ g Z 1 Z 2 Thismeansthat lim f(z)dz = lim f(z)dz+ f(z)dz M→¥ ZC(M,e) M→¥ (cid:18)Zg3 Zg4 (cid:19) anditfollowsfrom(3)and(4)that h k az (a+1) (hk)1−a e−i¥ cot(p hz)cot(p kz) h1−ac +k1−ac = + dz. −a k −a h p (hk)a 2i e+i¥ za (cid:18) (cid:19) (cid:18) (cid:19) Z ThiscompletestheproofofTheorem2. (cid:3) ProofofTheorem3. FromTheorem2,for´ (a)>1, (hk)1−a az (a+1) h k F(a) = − h1−ac +k1−ac , 2i p (hk)a −a k −a h (cid:18) (cid:18) (cid:19) (cid:18) (cid:19)(cid:19) sonowwestudythefunction a7→ az (a+1)− h1−ac h +k1−ac k . p (hk)a −a k −a h From the definition of c (h) (resp., c ((cid:0)k)) the fu(cid:0)nc(cid:1)tion h1−ac (cid:0) (cid:1)h(cid:1) +k1−ac k is a linear com- −a k −a h −a k −a h bination (with holomorphic coefficients) of the Hurwitz function z (s,x) with s = −a and x = m with m=1,...,k−1(resp., s=−aandx= m withm=1,...,k−1). Thisg(cid:0)ive(cid:1)saholomor(cid:0)ph(cid:1)ic continuaktion to h C\{1}. However,ata=1, h k h1−ac +k1−ac = 2p (s(h,k)+s(k,h)) −a −a k h (cid:18) (cid:19) (cid:18) (cid:19) iswelldefined. Thereforethefunction h1−ac h +k1−ac k hasaholomorphic continuation toC. −a k −a h Next,itisclearthatthefunction s(cid:0)7→(cid:1)sz (s+1) (cid:0) (cid:1) hasaholomorphiccontinuation toC\{0}. Theanalyticityofthisfunctionats=0followsfromtheanalytic continuation oftheRiemannz -function. Thus,ourdesiredresultfollowsfromthemonodromytheorem (see,e.g.,[15]). (cid:3) Toprove Theorem 4, we now turn to the particular case in which a=n>1 is an odd integer and study Bettin–Conrey sumsoftheformc . −n LetY (n)(z)denotethe(n+2)-thpolygammafunction(see,forexample,[14,Sec.5.15]). Itiswellknown thatfornapositiveinteger, (−1)n+1Y (n)(z) z (n+1,z) = n! whenever´ (z)>0(see,forinstance, [14,eq.25.11.12]), soforn>1,wemaywrite c h = (−1)n k(cid:229)−1cot p mh Y (n−1) m . −n k kn(n−1)! k k (cid:18) (cid:19) m=1 (cid:18) (cid:19) (cid:16) (cid:17) Bythereflectionformulaforthepolygammafunctions [14,eq.5.15.6], Y (n)(1−z)+(−1)n+1Y (n)(z) = (−1)np cot(n)(p z), weknowthatifnisodd,then m m p m Y (n−1) 1− −Y (n−1) = p cot(n−1) k k k (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) RECIPROCITYTHEOREMSFORBETTIN–CONREYSUMS 9 foreachm∈{1,2,...,k−1}. Therefore, 2k(cid:229)−1cot p mh Y (n−1) m = k(cid:229)−1cot p mh Y (n−1) m k k k k m=1 (cid:18) (cid:19) m=1 (cid:18) (cid:19) (cid:16) (cid:17) (cid:16) (cid:17) +k(cid:229)−1cot p (k−m)h Y (n−1) 1−m , k k m=1 (cid:18) (cid:19) (cid:16) (cid:17) whichimpliesthat 2k(cid:229)−1cot p mh Y (n−1) m = k(cid:229)−1cot p mh Y (n−1) m −Y (n−1) 1−m k k k k k m=1 (cid:18) (cid:19) m=1 (cid:18) (cid:19) (cid:16) (cid:17) (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17) = −p k(cid:229)−1cot p mh cot(n−1) p m . k k m=1 (cid:18) (cid:19) (cid:16) (cid:17) This means that for n> 1 odd, c is essentially a Dedekind cotangent sum. Indeed, using the notation −n in[9], c h = p k(cid:229)−1cot p mh cot(n−1) p m −n k 2kn(n−1)! k k (cid:18) (cid:19) m=1 (cid:18) (cid:19) (cid:16) (cid:17) k h 1 p = c n−1 0 n−1 . 2(n−1)!   0 0 0   ThusTheorem 4isaninstance ofTheorem2. Itssignificance isareciprocity instance forBettin–Conrey sumsoftheformc intermsofBernoullinumbers. Forthisreasonwegivethedetailsofitsproof. −n ProofofTheorem4. We consider the closed contour C(M,e ) defined as the positively oriented rectangle with vertices 1+iM, iM, −iM and 1−iM, with indentations (to the right) of radius 0<e <min 1,1 h k around0and1(seeFigure2). e (cid:8) (cid:9) SinceC(M,e )contains thesamepoles of f(z)=cot(p hz)cot(p kz)z (n,z) astheclosed contourC(M,e ) inFigure1usedtoproveTheorem2,wemayapplyCauchy’sresiduetheorem,lettingM→¥ ,andweonly needtodeeterminelimM→¥ C(M,e) f(z)dzinordertodeduceareciprocity lawforthesumsc−n. Asin the case ofC(M,e ), the integrals along the horizontal paths vanish, so using the periodicity of the R cotangent toaddintegralsaloengparallelpaths, aswedidwhenconsideringC(M,e ),weobtain ie −iM (5) lim f(z)dz = lim g(z)dz+ g(z)dz + g(z)dz, M→¥ ZC(M,e) M→¥ (cid:18)ZiM Z−ie (cid:19) Zg3 whereg denotestheindented patharound 0and 3 e cot(p kz)cot(p hz) g(z) = . zn Giventhatg(z)isanoddfunction,theverticalintegralscancelandwemayapplyCauchy’sresiduetheorem tointegrate g(z)alongthepositivelyoriented circleofradiuse andcentered at0,todeduce that lim f(z)dz = −p iResg(z). M→¥ C(M,e) z=0 Z This is the main reason to use the contouer C(M,e ) instead ofC(M,e ). Indeed, integration along C(M,e ) exploitstheparityofthefunction g(z),allowingustocanceltheverticalintegrals in(5). e e 10 JUANS.AULI,ABDELMEJIDBAYAD,ANDMATTHIASBECK FIGURE 2. TheclosedcontourC(M,e ). Theexpansion ofthecotangent function is e p zcot(p z) = (cid:229)¥ (2p i)mBmzm, m! m=0 withtheconvention thatB mustberedefinedtobezero. Thus,wehavetheexpansion 1 cot(p kz) = (cid:229)¥ (2i)(2p ik)mBm+1zm (m+1)! m=−1 andofcourse, ananalogous resultholdsforh. Hence, (6) Resg(z) = (2i)(2p i)n n(cid:229)+1 n+1 B B hmkn+1−m, z=0 p hk(n+1)! m m n+1−m m=0(cid:18) (cid:19) andgiventhatz (n+1)=−(2p i)n+1B [14,eq.25.6.2],theCauchyresidue theoremand(3)yield 2(n+1)! n+1 (7) 2p i n 1 nB +n(cid:229)+1 n+1 B B hmkn+1−m = h1−nc h +k1−nc k . n+1 m n+1−m −n −n hk i(n+1)! m k h (cid:18) (cid:19) m=0(cid:18) (cid:19) ! (cid:18) (cid:19) (cid:18) (cid:19) Finally, notethat theconvention B :=0isirrelevant in(7),since B inthis sum isalways multiplied by 1 1 aBernoullinumberwithoddindexlargerthan1. (cid:3) NotethatTheorem4isessentiallythesameasthereciprocitydeducedbyApostolforDedekind–Apostol sums [2]. This is a consequence of the fact that for n > 1 an odd integer, c h is a multiple of the −n k Dedekind–Apostol sums (h,k). Indeed,forsuchn[3,Theorem1] n (cid:0) (cid:1) h s (h,k) = in!(2p i)−nc . n −n k (cid:18) (cid:19)

See more

The list of books you might like

book image

The Silent Patient

Alex Michaelides
·0.52 MB

book image

Can’t Hurt Me: Master Your Mind and Defy the Odds

David Goggins
·364 Pages
·2018
·2.99 MB

book image

Corrupt (Devil's Night #1)

Penelope Douglas
·518 Pages
·2015
·0.74 MB

book image

As Good as Dead

Holly Jackson
·2021
·6.41 MB

book image

PostgreSQL 15 изнутри

Егор Рогов
·664 Pages
·2023
·12.655 MB

book image

Büyük Kyros

16 Pages
·2016
·1.98 MB

book image

Carolina football

2006
·33.2 MB

book image

SQE Services Agreement

101 Pages
·2017
·1.17 MB

book image

Bê-a-Blog

69 Pages
·2012
·3.09 MB

book image

My Sister, My Love

Joyce Carol Oates
·2008
·2.193 MB

book image

BVCM002573 M-30

108 Pages
·2007
·5.41 MB

book image

Legal studies 1010 : you and the law 1 : as a consumer and as a family member

Alberta. Alberta Education. Learning Technologies Branch
·2006
·4 MB

book image

The Ram

Winston-Salem State University
·2006
·13.4 MB

book image

Morris Mano

349 Pages
·2009
·33.27 MB

book image

New Moon

Stephenie Meyer [Meyer, Stephenie]
·2006
·0.5833 MB

book image

Soul Seeking

R Michael Card [Card, R Michael]
·2018
·0.389 MB