ebook img

Rechargeable Ion Batteries: Materials, Design, and Applications of Li-Ion Cells and Beyond PDF

385 Pages·2023·16.928 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Rechargeable Ion Batteries: Materials, Design, and Applications of Li-Ion Cells and Beyond

RechargeableIonBatteries Rechargeable Ion Batteries Materials, Design, and Applications of Li-Ion Cells and Beyond Edited by Katerina E. Aifantis, R. Vasant Kumar, and Pu Hu Editors AllbookspublishedbyWILEY-VCHarecarefully produced.Nevertheless,authors,editors,and Prof.KaterinaE.Aifantis publisherdonotwarranttheinformation DepartmentofMechanical&Aerospace containedinthesebooks,includingthisbook, Engineering tobefreeoferrors.Readersareadvisedtokeep UniversityofFlorida,Gainesville inmindthatstatements,data,illustrations, 1064CenterDrive proceduraldetailsorotheritemsmay Florida inadvertentlybeinaccurate. UnitedStates Prof.R.VasantKumar LibraryofCongressCardNo.:appliedfor MaterialsScience+Metallurgy UniversityofCambridge BritishLibraryCataloguing-in-PublicationData 27CharlesBabbageRoad Acataloguerecordforthisbookisavailable CB30FSCambridge fromtheBritishLibrary. UnitedKingdom Bibliographicinformationpublishedby Prof.PuHu theDeutscheNationalbibliothek WuhanInstituteofTechnology TheDeutscheNationalbibliotheklists SchoolofMaterialSciences& thispublicationintheDeutsche Engineering Nationalbibliografie;detailedbibliographic No.206,Guanggu1stroad dataareavailableontheInternetat 430205Wuhan <http://dnb.d-nb.de>. China ©2023WILEY-VCHGmbH,Boschstraße12, Cover:©Black_Kira/Shutterstock 69469Weinheim,Germany Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw. PrintISBN:978-3-527-35018-6 ePDFISBN:978-3-527-83669-7 ePubISBN:978-3-527-83671-0 oBookISBN:978-3-527-83670-3 Typesetting Straive,Chennai,India KaterinaAifantiswouldliketodedicatethisbooktoherparents,Maria&Eliasfor theirneverendingsupport,andFr.SymeonKrayiopoulos,whowasaskingherwhen shewouldbeginthesecondbookeversincethefirstonegotpublished. R.VasantKumarwouldliketodedicatethisbooktoGill,Vijay,Kailo,andAnastasia. PuHuwouldliketodedicatethisbooktohiswifePingandhisdaughterTong. vii Contents Preface xv 1 IntroductiontoElectrochemicalCells 1 R.VasantKumarandThapaneeSarakonsri 1.1 WhatareBatteries? 1 1.2 QuantitiesCharacterizingBatteries 4 1.2.1 Voltage 4 1.2.2 ElectrodeKinetics(PolarizationandCellImpedance) 8 1.2.2.1 ElectricalDoubleLayer 8 1.2.2.2 RateofReaction 8 1.2.2.3 ElectrodesAwayfromEquilibrium 9 1.2.2.4 TheTafelEquation 9 1.2.2.5 Example:PlottingaTafelCurveforaCopperElectrode 10 1.2.2.6 OtherLimitingFactors 12 1.2.2.7 TafelCurvesforaBattery 13 1.2.3 Capacity 14 1.2.4 ShelfLife 15 1.2.5 DischargeCurve/CycleLife 15 1.2.6 EnergyDensity 16 1.2.7 SpecificEnergyDensity 16 1.2.8 PowerDensity(Whg−1) 17 1.2.9 ServiceLife/TemperatureDependence 18 1.3 PrimaryandSecondaryBatteries 18 1.4 Conclusions 19 References 20 2 PrimaryBatteries 21 ThapaneeSarakonsriandR.VasantKumar 2.1 Introduction 21 2.2 TheEarlyBatteries 23 2.3 TheZinc/CarbonCell 25 2.3.1 TheLeclanchéCell 25 2.3.2 TheGassnerCell 25 viii Contents 2.3.3 CurrentZinc/CarbonCell 27 2.3.3.1 ElectrochemicalReactions 28 2.3.3.2 Components 29 2.3.4 Disadvantages 30 2.4 AlkalineBatteries 30 2.4.1 ElectrochemicalReactions 31 2.4.2 Components 33 2.4.3 Disadvantages 34 2.5 ButtonBatteries 34 2.5.1 MercuryOxideBattery 34 2.5.1.1 ElectrochemicalReactions 35 2.5.2 Zn/Ag OBattery 36 2 2.5.2.1 ElectrochemicalReactions 37 2.5.3 Metal–AirBatteries 37 2.5.3.1 Zn/AirBattery 38 2.5.3.2 Aluminum/AirBatteries 40 2.6 LiPrimaryBatteries 41 2.6.1 Lithium/ThionylChlorideBatteries 42 2.6.2 Lithium/SulfurDioxideCells 43 2.7 OxyrideBatteries 43 2.8 DamageinPrimaryBatteries 44 2.9 Conclusions 46 References 46 3 AReviewofMaterialsandChemistryforSecondary Batteries 49 R.VasantKumarandThapaneeSarakonsri 3.1 TheLead–AcidBattery(LAB) 51 3.1.1 ElectrochemicalReactions 52 3.1.2 Components 54 3.1.3 NewComponents 56 3.2 TheNickel–CadmiumBattery 58 3.2.1 ElectrochemicalReactions 60 3.3 Nickel–MetalHydride(Ni–MH)Batteries 61 3.4 SecondaryAlkalineBatteries 62 3.4.1 Components 62 3.5 SecondaryLithiumBatteries 62 3.5.1 Lithium-IonBatteries 63 3.5.2 Li–PolymerBatteries 67 3.5.3 Lithium/AirBatteries 68 3.5.4 EvaluationofLiBatteryMaterialsandChemistry 69 3.6 BatteryMarket 71 3.7 RecyclingandSafetyIssues 72 3.7.1 RecyclingofLead–AcidBatteries 73 3.7.2 DetailsontheRecyclingProcessofLead–AcidBatteries 75 Contents ix 3.8 Conclusions 80 References 80 4 ApplicationsofLithiumBatteries 83 HaokunDengandKaterinaE.Aifantis 4.1 PortableElectronicDevices 83 4.2 HybridandElectricVehicles 86 4.3 AerospaceApplications 94 4.4 MedicalApplications 97 4.4.1 HeartPacemakers 97 4.4.2 NeurologicalPacemakers 98 4.5 GridEnergyStorage 99 4.6 Conclusions 101 Acknowledgments 101 References 102 5 CathodeMaterialsforLithium-IonBatteries 105 PuHu,LintaoDou,TaoHuang,andAishuiYu 5.1 LayeredMaterials 105 5.1.1 LiCoO 105 2 5.1.2 Nickel-RichMaterials 107 5.1.3 ExcessManganeseOxideLayeredCathodeMaterials 113 5.2 SpinelMaterials 116 5.3 Polyanion(Phosphate,Silicates)FrameworkCathodeMaterials 119 5.3.1 LiMPO OlivineCrystalStructureandIntercalationMechanism 120 4 5.3.2 LMSiO OrthosilicateCrystalStructureandIntercalation 4 Mechanism 120 5.3.3 FactorstoImproveElectrochemicalPerformanceofLMXO 121 4 5.4 Conclusions 123 References 123 6 Next-GenerationAnodesforSecondaryLi-IonBatteries 127 KaterinaE.Aifantis,UtkarshAhuja,YanhongWang,andHongLi 6.1 Introduction 127 6.2 MechanicalInstabilitiesDuringElectrochemicalCycling 130 6.3 NanostructuredAnodes 133 6.4 Sn-BasedMaterials 133 6.4.1 Sn-BasedConversionReactionMaterials 134 6.4.2 Sn-BasedAlloys 136 6.4.3 Sn–CNanocomposites 140 6.4.4 Sn-BasedNanofiber/NanowireAnodes 143 6.5 Si-BasedMaterials 145 6.5.1 Si-FilmsAnodes 147 6.5.2 Si-NanowireAnodes 153 6.5.3 SiMicroparticleBasedPorousElectrodes 155 6.5.4 Si/CNanocompositesandotherSiNanoconfigurations 155 x Contents 6.5.5 Si/PolymerNanocomposites 159 6.5.6 Binders 162 6.5.7 Si–SiO –CComposites 163 2 6.6 OtherAnodeMaterials 165 6.6.1 MXeneElectrodes 166 6.6.2 Sb-BasedAnodes 167 6.6.3 Al-BasedAnodes 169 6.6.4 Bi-BasedAnodes 170 6.6.5 LiTiO-BasedAnodes 172 6.6.6 MetalOxide-BasedAnodes 172 6.7 Solid-StateBatteries 173 6.8 Conclusions 173 Acknowledgments 174 References 174 7 ElectrolytesforLithiumBatteries:TheQuestforImproving LithiumBatteryPerformanceandSafety 187 ClaudioCapiglia 7.1 Introduction 187 7.2 NonaqueousElectrolytes 188 7.2.1 TheSolid-ElectrolyteInterface(SEI) 189 7.2.2 CurrentCollectorCorrosion 190 7.2.3 SolventsforNonaqueousElectrolytes 191 7.2.4 SaltsforNonaqueousElectrolytes 193 7.2.4.1 LithiumPerchlorate(LiClO ) 194 4 7.2.4.2 LithiumTetrafluoroborate(LiBF ) 194 4 7.2.4.3 LithiumHexafluoroarsenate(LiAsF ) 194 6 7.2.4.4 LithiumHexafluorophosphate(LiPF ) 195 6 7.2.4.5 LithiumTrifluoromethanesulfonate(Li(CF SO )) 195 3 3 7.2.4.6 LithiumBis(trifluoromethanesulfonyl)imide(Li[N(CF SO ) ]or 3 2 2 LiTFSI): 195 7.2.4.7 LithiumBis(perfluoroethylsulfonyl)imide(Li[NC(C F SO ) ]or 2 5 2 2 LiBETI) 196 7.2.4.8 LithiumTris(trifluoromethanesulfonyl)methide(Li[C(CF SO ) ]or 3 2 3 LiTFSM) 196 7.2.4.9 LithiumTris(perfluoroethyl)trifluorophosphate(Li[PF (CF CF ) ]or 3 3 2 3 LiFAP) 197 7.2.4.10 LithiumFluoroalkylborate(Li[BF (CCF CF )]orLiFAB) 197 3 3 2 7.2.4.11 LithiumNonafluorobutylsulfonyltrifluoromethylsulfonylimide (Li[N(C F SO )(CF SO )]orLiFBMSI):LiFBMSI: 198 4 9 2 3 2 7.2.4.12 LithiumB(oxalato)borate(Li[B(C O ) ]orLiBOB) 198 2 4 2 7.2.5 AdditivesforNonaqueousElectrolytes 198 7.2.5.1 ReductiveAdditives 199 7.2.5.2 PolymerizableAdditivesforGraphite-basedAnode 199 7.2.5.3 ReactionAdditivesforGraphite-basedAnode 199 Contents xi 7.2.5.4 AbsorptionAdditivesforGraphite-basedAnode 202 7.2.5.5 SurfaceModifierAdditivesforGraphite-basedAnode 202 7.2.5.6 ProtectiveAdditivesforCathode 202 7.2.5.7 LiPF AdditivestoStabilizeSaltDecomposition 203 6 7.2.5.8 ShuttleAdditives 203 7.2.5.9 ShutdownAdditives 203 7.2.5.10 Fire-RetardantAdditives 203 7.2.5.11 AdditivestoReduceLithiumPlating 204 7.2.5.12 AdditivestoIncreasetheTransportNumber 204 7.2.5.13 AdditivesforHinderingAluminumCurrentCollectorCorrosion 204 7.2.5.14 AdditivestoImprovetheWettingofSeparator 204 7.3 GelPolymerElectrolytes 205 7.3.1 GelPolymerElectrolyteBasedonCopolymerPVDF–HFP 206 7.3.2 GelPolymerElectrolytewithIonicLiquid 209 7.4 Solid-StateBatteries 210 7.4.1 First-GenerationSolid-StateBatteries 210 7.4.2 Second-GenerationSolid-StateBatteries 210 7.5 Solid-PolymerElectrolytes 212 7.5.1 TheAdvantageandtheQueryfortheNewPolymericMaterialsfor PolymerElectrolytes 214 7.5.2 PolymerCompositeElectrolytes 217 7.6 SolidElectrolytes 219 7.6.1 Solid-StateElectrolyteIssues 220 7.6.2 NASICON-TypeLithiumElectrolytes 221 7.6.2.1 NASICON-TypeLithiumElectrolytesforLithium–AirBatteries 221 7.6.2.2 NASICON-TypeLithiumElectrolytesforLithiumAqueous Batteries 222 7.6.3 GlassElectrolytes 222 7.6.4 Glass–CeramicsElectrolyte 223 7.6.5 LGPSFamily 224 7.7 Solid-StateBatteryCompanies 225 7.8 Conclusions 226 Acknowledgment 227 References 227 8 DevelopmentsinLithium–SulfurBatteries 231 R.VasantKumarandKaiXi 8.1 IntroductiontoLithium–SulfurBatteries 231 8.2 ElectrochemicalPrinciples 234 8.3 SulfurUtilizationandCycleLife 237 8.4 PotentialSolutionstoHurdles 240 8.5 CarbonMaterials 242 8.5.1 PorousCarbon 243 8.5.2 Graphene 243 8.5.3 CarbonNanotube 246

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.