ebook img

Recent Advances in Reliability Theory: Methodology, Practice, and Inference PDF

514 Pages·2000·44.865 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Recent Advances in Reliability Theory: Methodology, Practice, and Inference

Statistics for Industry and Technology Series Editor N. Balakrishnan McMaster University Department ofMathematics and Statistics 1280 Main Street West Hamilton, Ontario L8S 4Kl Canada Editorial Advisory Board Max Engelhardt EG&G Idaho, Inc. Idaho Falls, ID 83415 Harry F. Martz Group A-I MS F600 Los Alamos National Laboratory Los Alamos, NM 87545 Gary C. McDonald NAO Research & Development Center 30500 Mound Road Box 9055 Warren, MI 48090-9055 Peter R. Nelson Department ofMathematical Sciences Clemson University Martin Hall Box 341907 Clemson, SC 29634-1907 Kazuyuki Suzuki Communication & Systems Engineering Department University ofElectro Communications 1-5-1 Chofugaoka Chofu-shi Tokyo 182 Japan Recent Advances in Reliability Theory Methodology, Practice, and Inference N. Limnios M. Nikulin Editors Springer Science+Business Media, LLC N. Limnios M. Nikulin Division Mathematiques Appliquees Universite Victor Segalen-Bordeaux 2 Universite de Technologie de Compiegne Bordeaux Cedex 33076 Compiegne Cedex 60205 France France Library of Congress Cataloging-in-Publication Data Recent advances in reliability theory : methodology, practice, and inference I editors, N. Limnios, M. Nikulin. p. em. - (Statistics for industry and technology) Includes bibliographical references. ISBN 978-1-4612-7124-6 ISBN 978-1-4612-1384-0 (eBook) DOI 10.1007/978-1-4612-1384-0 1. Reliability (Engineering)-Mathematical models. 2. Stochastic processes. 1. Limnios, N. (Nikolaos) II. Nikulin, M.S. (Mikhail Stepanovich) III. Series. TA169 .R42 2000 620'.00452-dc21 00-039790 CIP Prlnted on acid-free paper. © 2000 Springer Science+Business Media New York Originally published by Birkhlluser Boston in 2000 Softcover reprint of the hardcover 1s t edition 2000 AlI rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchan dise Marks Act, may accordingly be used freely by anyone. ISBN 978-1-4612-7124-6 SPIN 10727141 Typeset by the editors in LaTeX. Cover design by Vemon Press, Boston, MA. 9 8 7 6 5 432 1 Contents Preface xv Contributors xvii List of Tables xxiii List ofFigures xxv I General Approach 1 1 Reliability: Past, Present, Future 3 Igor Ushakov 1.1 Introduction.................... 3 1.2 Main Directions of Modern Reliability Theory . 4 1.3 History of Ideas in Reliability . . . . . . . . . 7 1.4 In the White Water ofa Publications Stream 11 1.5 Problems Expecting Solutions . 12 1.6 Conclusion .. 14 2 Reliability Analysis as a Tool for Expressing and Communicating Uncertainty 23 Terje Aven 2.1 Introduction. 23 2.2 Basic Principles . 25 2.3 Examples . . . . 27 2.3.1 Production loss . 27 2.3.2 Methods ofstructural reliability analysis. 32 2.4 Discussion.......... . 33 v vi Contents II Probability Models and Related Issues 39 3 Modeling a Process of Non-Ideal Repair 41 Max S. Finkelstein 3.1 Introduction..................... 41 3.2 Imperfect and General Repair: A BriefReview. 43 3.3 Multiphase ALM. 46 3.4 Final Remarks . 50 4 Some Models and Mathematical Results for Reliability of Systems of Components 55 Christiane Cocozza-Thivent 4.1 Which Model to Choose? . . . . . . . . . . . . 55 4.1.1 Several models . . . . . . . . . . . . . . 55 4.1.2 Comparisons with constant failure rates 57 4.2 Comparison of Systems 60 4.2.1 Comparison in case ofMarkov models 60 4.2.2 Comparison in case ofindependent components with general rates .... . . . . . . . 61 4.3 Results Depending on the Mean Values 61 4.3.1 For a semi-Markov process 61 4.3.2 For a product of independent semi-Markov processes. 61 4.4 Some Explicit Formulas . . . . . . . . . . . . . . . . . . . . . 62 4.4.1 General results for a product of interacting semi-Markov processes. . . . . . . . . . .. 62 4.4.2 Case of a product ofindependent alternating renewal processes . 62 4.5 Technics ofProof . . . . . . . . . . . . . 64 4.5.1 Renewal theory. . . . . . . . . . 64 4.5.2 Adding supplementary variables 65 4.5.3 Martingale technics 66 5 Algorithms of Stochastic Activity and Problems ofReliability 69 Boris Harlamov 5.1 Introduction...................... 69 5.2 Determinate Dependence on a Valuating Function 71 5.3 Random Dependence on a Valuating Function. 74 5.4 Algorithm of Search of Minimum Intensity of a Stream ofRefusals . . . . . . . . . . . . . . . . . . . . . .. .. 80 6 Some Shifted Stochastic Orders 85 Rosa E. Lillo, Asok K. Nanda and Moshe Shaked Contents vii 6.1 Introduction and Preliminaries . . . . . . . . . . 85 6.1.1 Logconcavity and logconvexity revisited . 85 6.1.2 The likelihood ratio and the hazard rate orders revisited . . . . . . . . 87 6.1.3 Some facts on order statistics 88 6.2 The Up Likelihood Ratio Order .. 89 6.3 The Down Likelihood Ratio Order 93 6.4 The Up Hazard Rate Order .. 97 6.5 The Down Hazard Rate Order .. · 100 7 Characterization of Distributions in Reliability 105 Lev Klebanov and Gabor Szekely 7.1 Introduction . · 105 7.2 The Main Equation and its Analytic Solutions · 107 7.3 The General Solution ofthe Main Equation .. · 109 7.4 Other Normalizations . · 111 7.5 Reconstruction of the Reliability Polynomial from the Limit Distribution . . . . . . . . . . . . · 112 7.6 A Generalization ofthe Main Equation. · 112 7.7 A General Limit Result . · 114 III Asymptotic Analysis 117 8 Asymptotic Analysis of Reliability for Switching Systems in Light and Heavy Traffic Conditions 119 Vladimir V. Anisimov 8.1 Introduction................... . 119 8.2 Flows ofRare Events in Systems with Mixing . 121 8.3 Asymptotically Connected Sets (S-Sets) . 123 8.3.1 Homogeneous case . . . . . . . . 123 8.3.2 Nonhomogeneous case . . . . . . 125 8.4 Asymptotically Consolidated Systems . 126 8.5 Heavy Traffic Conditions. . . . . . . . . 127 8.6 Analysis ofReliability of Queueing Models. . 129 8.6.1 Light traffic analysis in models with finite capacity . 129 8.6.2 Heavy traffic analysis . 130 8.6.3 Systems with highly reliable servers ..... . 131 9 Nonlinearly Perturbed Markov Chains and Large Deviations for Lifetime Functionals 135 Dmitrii S. Silvestrov 9.1 Mixed Large Deviation and Quasi-Ergodic Theorems. · 135 Contents Vlll 9.2 Asymptotical Expansions for mgfofFirst Hitting Times . .. . 138 9.3 Asymptotical Expansions for Quasi-Stationary Distributions. . 139 9.4 Pseudo- and Quasi-Stationary Asymptotics . . . . . . . . .. . 140 10 Evolutionary Systems in an Asymptotic Split Phase Space 145 Vladimir S. Korolyuk and Nikolaos Limnios 10.1 Introduction 145 10.2 Representation ofa Stochastic Evolutionary System. . . . . . . . . . . . . . . . . . . . . . . 146 10.3 Examples of Stochastic Evolutionary Systems . 148 10.4 Phase Merging Scheme. . . . . . . 148 10.5 Average Scheme . 152 10.6 Diffusion Approximation Scheme . 155 10.7 Reliability Interpretation. . . . . . 158 11 An Asymptotic Approach to Multistate Systems Reliability Evaluation 163 Krzysztof Kolowrocki 11.1 Introduction. . . . . . . . . . . . . . . . . . . . . 163 11.2 Limit Reliability Functions of Series Systems . . 168 11.3 Limit Reliability Functions ofParallel Systems . 172 11.4 Applications. . . . . . . . . . . . . . . . . . . . . 175 IV Statistical Models and Data Analysis 181 12 Computer Intensive Methods Based on Resampling in Analysis ofReliability and Survival Data 183 Yuri K. Belyaev 12.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 183 12.2 Weakly Approaching Distributions . . . . . . . . . . . . 185 12.3 Applications to Assessing Distributions ofEstimators. . 188 12.4 Assessing Distributions of Maximum Likelihood Estimators . 194 12.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . .. . 196 13 Statistical Analysis of Damage Processes 199 Waltraud Kahle and Heide Wendt 13.1 Introduction. . . . . . . . . . . . . . . . . . 199 13.2 Damage Models. . . . . . . . . . . . . . . . 201 13.2.1 Models based on continuous processes . 201 13.2.2 Shock models . . . . . . . . . . . . . . . 203 13.3 Modeling Damage by Marked Point Processes . . 203 Contents ix 14 Data Analysis Based on Warranty Database 213 Kazuyuki Suzuki, Wataru Yamamoto, Md. Rezaul Karim and Lianhua Wang 14.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . 213 14.2 Age-based Claim Analysis - Marginal Count Data. . 215 14.2.1 Repairable products . . . . . . . . . . . . . . . 216 14.2.2 Nonrepairable products - Poisson approximation . 218 14.2.3 An example . . . . . . . . . . . . . . . . 219 14.3 Estimation ofFailure Time Distribution . . . . 220 14.4 Analysis Without Sales Amount Information . 224 14.5 Conclusion . 225 15 Failure Models Indexed by Time and Usage 229 Simon P. Wilson 15.1 Introduction and Overview . 229 15.2 Formulation ofFailure Models Indexed by Two Scales . 231 15.2.1 Modelling the time-dependent covariate . . . . . 231 15.2.2 Modelling the effect ofthe covariate on time to failure . 235 15.3 Examples . . . . . . . . . . . . . . . . . . . . . 238 15.3.1 The Poisson process . . . . . . . . . . . 239 15.3.2 The doubly stochastic Poisson process . 239 15.3.3 The compound Poisson process . . . . . 240 16 A New Multiple ProofLoads Approach For Estimating Correlations 245 Richard Johnson and Wenqing Lu 16.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 245 16.2 Review of Current Designs for Estimating Correlation . 246 16.3 A New Double ProofLoad Design . 249 16.3.1 Design, notation and the likelihood. . . . . . . . 249 16.3.2 The Fisher information for the double proofloading . 250 16.3.3 Numerical results for the Fisher information. . . . 252 16.4 A Symmetric Version ofthe Double ProofLoad Design. . 253 16.5 Asymptotic Results. . . . . . . . . . . . . . . . . . . . . 254 16.6 An Example Using the Bivariate Weibull Distribution . 255 16.7 Conclusion . 256 17 Conditional and Partial Correlation For Graphical Uncertainty Models 259 Dorota Kurowicka and Roger Cooke 17.1 Introduction. . . . . . . . . . . . 259 17.2 Partial and Conditional Correlation . 260 x Contents 17.3 Trees, Vines and Copulas .262 17.4 Conditions for ~ = 0 . .264 17.5 Copulae . .266 17.6 Computing ~ . .269 17.7 Numerical Results .273 17.8 Conclusions .... .275 V Methods Common to Reliability and Survival Analysis 277 18 Semiparametric Methods of Time Scale Selection 279 Thierry Duchesne 18.1 Introduction. . . . . . . . . 279 18.2 Modeling Failure . . . . . . 280 18.3 Semiparametric Inference . 282 18.4 Semiparametric Model Assessment . 285 18.5 Nonparametric Age Curves . 286 18.6 Conclusion . 288 19 Censored and Truncated Lifetime Data 291 Catherine Huber 19.1 Introduction. . . . . . . . . . . . . . . . . 291 19.2 Examples of Censoring and Truncation. . 293 19.2.1 Censoring . . . . . . . . . . . . . . 293 19.2.2 Truncation .;.......... . 293 19.3 Regression Models: Independent Case. . 294 19.3.1 Cox model for independent individuals. . 294 19.3.2 Logistic discrete regression models . 296 19.3.3 Accelerated models. . . . . 296 19.4 Models for Clustered Data. . . . . . . . . . 297 19.4.1 Dependence as a nuisance . . . . . . 298 19.4.2 Models for estimating dependence . 300 20 Tests for a Family of Survival Models Based on Extremes 307 Martin Crowder 20.1 The Situation. . . . . . . . . . . . . 307 20.2 Distributions of Sample Extremes. . 309 20.3 A Test for 1/ = 0 . 310 = 20.4 A Test for 1 . 312 1/ 20.5 A Test for K, = 0 . 313 = 20.6 A Test for T 0 . 313 = = 20.7 Tests for 0 . 314 1/ T = = 20.8 Tests for 1/ - 1 T 0 . . 315

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.