ebook img

Recent Advances in Hybrid Metaheuristics for Data Clustering PDF

187 Pages·2020·28.327 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Recent Advances in Hybrid Metaheuristics for Data Clustering

(cid:2) RecentAdvancesinHybridMetaheuristicsforDataClustering (cid:2) (cid:2) (cid:2) (cid:2) Recent Advances in Hybrid Metaheuristics for Data Clustering Edited by Sourav De CoochBeharGovernmentEngineeringCollege,WestBengal,India Sandip Dey SukantaMahavidyalaya,WestBengal,India (cid:2) (cid:2) Siddhartha Bhattacharyya CHRIST(DeemedtobeUniversity),Bangalore,India (cid:2) (cid:2) Thiseditionfirstpublished2020 ©2020JohnWiley&SonsLtd Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyform orbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhow toobtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/go/permissions. TherightofSouravDe,SandipDey,andSiddharthaBhattacharyyatobeidentifiedastheauthorsoftheeditorialmaterial inthisworkhasbeenassertedinaccordancewithlaw. RegisteredOffices JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK EditorialOffice TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsin standardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowof informationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewand evaluatetheinformationprovidedinthepackageinsertorinstructionsforeachchemical,pieceofequipment,reagent,or devicefor,amongotherthings,anychangesintheinstructionsorindicationofusageandforaddedwarningsand precautions. Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentations orwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimall (cid:2) warranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. (cid:2) Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotionalstatementsfor thiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitationand/orpotentialsource offurtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservicestheorganization, website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthe publisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsites listedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthe publishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages. LibraryofCongressCataloging-in-PublicationData Names:De,Sourav,1979-editor.|Dey,Sandip,1977-editor.| Bhattacharyya,Siddhartha,1975-editor. Title:Recentadvancesinhybridmetaheuristicsfordataclustering/edited byDr.SouravDe,Dr.SandipDey,Dr.SiddharthaBhattacharyya. Description:Firstedition.|Hoboken,NJ:JohnWiley&Sons,Inc.,[2020] |Includesbibliographicalreferencesandindex. Identifiers:LCCN2020010571(print)|LCCN2020010572(ebook)|ISBN 9781119551591(cloth)|ISBN9781119551614(adobepdf)|ISBN 9781119551607(epub) Subjects:LCSH:Clusteranalysis–Dataprocessing.|Metaheuristics. Classification:LCCQA278.55.R432020(print)|LCCQA278.55(ebook)| DDC519.5/3–dc23 LCrecordavailableathttps://lccn.loc.gov/2020010571 LCebookrecordavailableathttps://lccn.loc.gov/2020010572 CoverDesign:Wiley CoverImage:©Nobi_Prizue/GettyImages Setin9.5/12.5ptSTIXTwoTextbySPiGlobal,Chennai,India PrintedandboundbyCPIGroup(UK)Ltd,Croydon,CR04YY 10 9 8 7 6 5 4 3 2 1 (cid:2) (cid:2) Dr.SouravDededicatesthisbooktohisrespectedparents,SatyaNarayanDeandTapasiDe; hislovingwife,DebolinaGhosh;hisbelovedson,AishikDe;hissister,SoumiDe,andhis in-laws. Dr.SandipDeydedicatesthisbooktothelovingmemoryofhisfather,thelateDhananjoy Dey;hisbelovedmother,Smt.GitaDey;hiswife,SwagataDeySarkar;hischildren,Sunishka andShriaan;hissiblings,Kakali,Tanusree,andSanjoy;andhisnephews,Shreyashand Adrishaan. Dr.SiddharthaBhattacharyyadedicatesthisbooktohislatefather,AjitKumar Bhattacharyya;hislatemother,HashiBhattacharyya;hisbelovedwife,Rashni,andhis in-laws,AsisMukherjeeandPolyMukherjee. (cid:2) (cid:2) (cid:2) (cid:2) vii Contents ListofContributors xiii SeriesPreface xv Preface xvii 1 MetaheuristicAlgorithmsinFuzzyClustering 1 SouravDe,SandipDey,andSiddharthaBhattacharyya 1.1 Introduction 1 1.2 FuzzyClustering 1 1.2.1 Fuzzyc-means(FCM)clustering 2 (cid:2) 1.3 Algorithm 2 (cid:2) 1.3.1 SelectionofClusterCenters 3 1.4 GeneticAlgorithm 3 1.5 ParticleSwarmOptimization 5 1.6 AntColonyOptimization 6 1.7 ArtificialBeeColonyAlgorithm 7 1.8 LocalSearch-BasedMetaheuristicClusteringAlgorithms 7 1.9 Population-BasedMetaheuristicClusteringAlgorithms 8 1.9.1 GA-BasedFuzzyClustering 8 1.9.2 PSO-BasedFuzzyClustering 9 1.9.3 AntColonyOptimization–BasedFuzzyClustering 10 1.9.4 ArtificialBeeColonyOptimization–BasedFuzzyClustering 10 1.9.5 DifferentialEvolution–BasedFuzzyClustering 11 1.9.6 FireflyAlgorithm–BasedFuzzyClustering 12 1.10 Conclusion 13 References 13 2 HybridHarmonySearchAlgorithmtoSolvetheFeatureSelectionfor DataMiningApplications 19 LaithMohammadAbualigah,MoflehAl-diabat,MohammadAlShinwan, KhaldoonDhou,BisanAlsalibi,EssamSaidHanandeh,andMohammadShehab 2.1 Introduction 19 2.2 ResearchFramework 21 2.3 TextPreprocessing 22 (cid:2) (cid:2) viii Contents 2.3.1 Tokenization 22 2.3.2 StopWordsRemoval 22 2.3.3 Stemming 23 2.3.4 TextDocumentRepresentation 23 2.3.5 TermWeight(TF-IDF) 23 2.4 TextFeatureSelection 24 2.4.1 MathematicalModeloftheFeatureSelectionProblem 24 2.4.2 SolutionRepresentation 24 2.4.3 FitnessFunction 24 2.5 HarmonySearchAlgorithm 25 2.5.1 ParametersInitialization 25 2.5.2 HarmonyMemoryInitialization 26 2.5.3 GeneratingaNewSolution 26 2.5.4 UpdateHarmonyMemory 27 2.5.5 ChecktheStoppingCriterion 27 2.6 TextClustering 27 2.6.1 MathematicalModeloftheTextClustering 27 2.6.2 FindClustersCentroid 27 2.6.3 SimilarityMeasure 28 2.7 k-meanstextclusteringalgorithm 28 2.8 ExperimentalResults 29 (cid:2) 2.8.1 EvaluationMeasures 29 (cid:2) 2.8.1.1 F-measureBasedonClusteringEvaluation 30 2.8.1.2 AccuracyBasedonClusteringEvaluation 31 2.8.2 ResultsandDiscussions 31 2.9 Conclusion 34 References 34 3 AdaptivePosition–BasedCrossoverintheGeneticAlgorithmforData Clustering 39 ArnabGainandPrasenjitDey 3.1 Introduction 39 3.2 Preliminaries 40 3.2.1 Clustering 40 3.2.1.1 k-meansClustering 40 3.2.2 GeneticAlgorithm 41 3.3 RelatedWorks 42 3.3.1 GA-BasedDataClusteringbyBinaryEncoding 42 3.3.2 GA-BasedDataClusteringbyRealEncoding 43 3.3.3 GA-BasedDataClusteringforImbalancedDatasets 44 3.4 ProposedModel 44 3.5 Experimentation 46 3.5.1 ExperimentalSettings 46 3.5.2 DBIndex 47 3.5.3 ExperimentalResults 49 (cid:2) (cid:2) Contents ix 3.6 Conclusion 51 References 57 4 ApplicationofMachineLearningintheSocialNetwork 61 BelfinR.V.,E.GraceMaryKanaga,andSumanKundu 4.1 Introduction 61 4.1.1 SocialMedia 61 4.1.2 BigData 62 4.1.3 MachineLearning 62 4.1.4 NaturalLanguageProcessing(NLP) 63 4.1.5 SocialNetworkAnalysis 64 4.2 ApplicationofClassificationModelsinSocialNetworks 64 4.2.1 SpamContentDetection 65 4.2.2 TopicModelingandLabeling 65 4.2.3 HumanBehaviorAnalysis 67 4.2.4 SentimentAnalysis 68 4.3 ApplicationofClusteringModelsinSocialNetworks 68 4.3.1 RecommenderSystems 69 4.3.2 SentimentAnalysis 70 4.3.3 InformationSpreadingorPromotion 70 4.3.4 Geolocation-SpecificApplications 70 (cid:2) 4.4 ApplicationofRegressionModelsinSocialNetworks 71 (cid:2) 4.4.1 SocialNetworkandHumanBehavior 71 4.4.2 EmotionContagionthroughSocialNetworks 73 4.4.3 RecommenderSystemsinSocialNetworks 74 4.5 ApplicationofEvolutionaryComputingandDeepLearninginSocial Networks 74 4.5.1 EvolutionaryComputingandSocialNetwork 75 4.5.2 DeepLearningandSocialNetworks 75 4.6 Summary 76 Acknowledgments 77 References 78 5 PredictingStudents’GradesUsingCART,ID3,andMulticlassSVM OptimizedbytheGeneticAlgorithm(GA):ACaseStudy 85 DebanjanKonar,RuchitaPradhan,TaniaDey,TejaswiniSapkota, andPrativaRai 5.1 Introduction 85 5.2 LiteratureReview 87 5.3 DecisionTreeAlgorithms:ID3andCART 88 5.4 MulticlassSupportVectorMachines(SVMs)OptimizedbytheGenetic Algorithm(GA) 90 5.4.1 GeneticAlgorithmsforSVMModelSelection 92 5.5 PreparationofDatasets 93 (cid:2) (cid:2) x Contents 5.6 ExperimentalResultsandDiscussions 95 5.7 Conclusion 96 References 96 6 ClusterAnalysisofHealthCareDataUsingHybridNature-Inspired Algorithms 101 KauserAhmedP,RishabhAgrawal 6.1 Introduction 101 6.2 RelatedWork 102 6.2.1 FireflyAlgorithm 102 6.2.2 k-meansAlgorithm 103 6.3 ProposedMethodology 104 6.4 ResultsandDiscussion 106 6.5 Conclusion 110 References 111 7 PerformanceAnalysisThroughaMetaheuristicKnowledge Engine 113 InduChhabraandGunmalaSuri 7.1 Introduction 113 7.2 DataMiningandMetaheuristics 114 (cid:2) 7.3 ProblemDescription 115 (cid:2) 7.4 AssociationRuleLearning 116 7.4.1 AssociationMiningIssues 116 7.4.2 ResearchInitiativesandProjects 116 7.5 LiteratureReview 117 7.6 Methodology 119 7.6.1 Phase1:PatternSearch 120 7.6.2 Phase2:RuleMining 120 7.6.3 Phase3:KnowledgeDerivation 121 7.7 Implementation 121 7.7.1 TestIssues 121 7.7.2 SystemEvaluation 121 7.7.2.1 IndicatorMatrixFormulation 122 7.7.2.2 Phase1:FrequentPatternDerivation 123 7.7.2.3 Phase2:AssociationRuleFraming 123 7.7.2.4 Phase3:KnowledgeDiscoveryThroughMetaheuristicImplementation 123 7.8 PerformanceAnalysis 124 7.9 ResearchContributionsandFutureWork 125 7.10 Conclusion 126 References 126 (cid:2) (cid:2) Contents xi 8 MagneticResonanceImageSegmentationUsingaQuantum-Inspired ModifiedGeneticAlgorithm(QIANA)BasedonFRCM 129 SunandaDas,SouravDe,SandipDey,andSiddharthaBhattacharyya 8.1 Introduction 129 8.2 LiteratureSurvey 131 8.3 QuantumComputing 133 8.3.1 Quoit-QuantumBit 133 8.3.2 Entanglement 133 8.3.3 Measurement 133 8.3.4 QuantumGate 134 8.4 SomeQualityEvaluationIndicesforImageSegmentation 134 8.4.1 F(I) 134 8.4.2 F’(I) 135 8.4.3 Q(I) 135 8.5 Quantum-InspiredModifiedGeneticAlgorithm(QIANA)–BasedFRCM 135 8.5.1 Quantum-InspiredMEGA(QIANA)–BasedFRCM 136 8.6 ExperimentalResultsandDiscussion 139 8.7 Conclusion 147 References 147 9 AHybridApproachUsingthek-meansandGeneticAlgorithmsfor (cid:2) ImageColorQuantization 151 (cid:2) MarcosRobertoeSouza,AndersonCarlosSousaeSantos,andHelioPedrini 9.1 Introduction 151 9.2 Background 152 9.3 ColorQuantizationMethodology 154 9.3.1 CrossoverOperators 157 9.3.2 MutationOperators 158 9.3.3 FitnessFunction 158 9.4 ResultsandDiscussions 159 9.5 ConclusionsandFutureWork 168 Acknowledgments 168 References 168 Index 173 (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.