Springer Optimization and Its Applications 138 Vijay Gupta · Themistocles M. Rassias P. N. Agrawal · Ana Maria Acu Recent Advances in Constructive Approximation Theory Springer Optimization and Its Applications Volume 138 ManagingEditor PanosM.Pardalos,UniversityofFlorida Editor-CombinatorialOptimization Ding-ZhuDu,UniversityofTexasatDallas AdvisoryBoard J.Birge,UniversityofChicago S.Butenko,TexasA&MUniversity F.Giannessi,UniversityofPisa S.Rebennack,KarlsruheInstituteofTechnology T.Terlaky,LehighUniversity Y.Ye,StanfordUniversity AimsandScope Optimizationhasbeenexpandinginalldirectionsatanastonishingrateduringthe lastfewdecades.Newalgorithmicandtheoreticaltechniqueshavebeendeveloped, thediffusionintootherdisciplineshasproceededatarapidpace,andourknowledge ofallaspectsofthefieldhasgrownevenmoreprofound.Atthesametime,oneof themoststrikingtrendsinoptimizationistheconstantlyincreasingemphasisonthe interdisciplinarynatureofthefield.Optimizationhasbeenabasictoolinallareasof appliedmathematics,engineering,medicine,economicsandothersciences. The series Springer Optimization and Its Applications publishes undergraduate and graduate textbooks, monographs and state-of-the-art expository works that focusonalgorithmsforsolvingoptimizationproblemsandalsostudyapplications involvingsuchproblems.Someofthetopicscoveredincludenonlinearoptimization (convex and nonconvex), network flow problems, stochastic optimization, optimal control, discrete optimization, multi-objective programming, description of soft- warepackages,approximationtechniquesandheuristicapproaches. Moreinformationaboutthisseriesathttp://www.springer.com/series/7393 Vijay Gupta • Themistocles M. Rassias P. N. Agrawal • Ana Maria Acu Recent Advances in Constructive Approximation Theory 123 VijayGupta ThemistoclesM.Rassias DepartmentofMathematics DepartmentofMathematics NetajiSubhasInstituteofTechnology NationalTechnicalUniversityofAthens NewDelhi,India Athens,Greece P.N.Agrawal AnaMariaAcu DepartmentofMathematics DepartmentofMathematicsandInformatics IndianInstituteofTechnology LucianBlagaUniversityofSibiu Roorkee,India Sibiu,Romania ISSN1931-6828 ISSN1931-6836 (electronic) SpringerOptimizationandItsApplications ISBN978-3-319-92164-8 ISBN978-3-319-92165-5 (eBook) https://doi.org/10.1007/978-3-319-92165-5 LibraryofCongressControlNumber:2018944286 MathematicsSubjectClassification:47-XX,30-XX,32-XX,34-XX,41-XX,46-XX,49-XX,65-XX ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAGpart ofSpringerNature. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Recent Advances in Constructive Approximation Theory deals with various recent problems on linear positive operators. We survey upon recent research work in this domain and also present extensions of known approximation results on linear positive operators in post quantum and in bivariate setting. This book is designed forgraduatestudents,researchers,andengineersworkingonapproximationtheory and related areas of mathematical analysis. The book in hand is a self-contained research monograph which presents theory, methods, and various applications in mathematicalanalysisandapproximationtheory. WewouldliketoacknowledgethesuperbassistancethatthestaffofSpringerhas providedforthepublicationofthisbook. NewDelhi,India VijayGupta Athens,Greece ThemistoclesM.Rassias Roorkee,India P.N.Agrawal Sibiu,Romania AnaMariaAcu v Contents 1 MomentGeneratingFunctionsandCentralMoments .................. 1 1.1 SomeOperators ......................................................... 1 1.1.1 BernsteinOperators............................................. 1 1.1.2 BaskakovOperators ............................................ 3 1.1.3 Szász–MirakyanOperators..................................... 5 1.1.4 Lupas¸Operators ................................................ 7 1.1.5 PostWidderOperators.......................................... 8 1.2 KantorovichTypeOperators............................................ 10 1.2.1 Bernstein–KantorovichOperators ............................. 10 1.2.2 Baskakov–KantorovichOperators............................. 13 1.2.3 Szász–KantorovichOperators.................................. 15 1.2.4 Lupas¸–KantorovichOperators ................................. 17 1.3 DurrmeyerTypeOperators ............................................. 19 1.3.1 Szász–DurrmeyerOperators ................................... 20 1.3.2 Baskakov–SzászOperators..................................... 21 1.3.3 Pa˘ltaˇneaTypeOperators........................................ 24 2 QuantitativeEstimates ...................................................... 29 2.1 DiscreteOperators ...................................................... 30 2.1.1 ModifiedSzász–MirakyanOperators.......................... 30 2.1.2 Lupas¸-TypeModifiedOperators ............................... 33 2.1.3 ModifiedBaskakovTypeOperators ........................... 37 2.2 SomeIntegralOperators................................................ 43 2.2.1 Post-WidderOperators ......................................... 43 2.2.2 Lupas¸–KantorovichTypeModifiedOperators ................ 44 2.2.3 ModifiedSzász–KantorovichOperators....................... 49 2.2.4 ModifiedSzász–DurrmeyerOperators......................... 51 2.2.5 ModificationsofPhillipsOperators............................ 53 2.3 BetterApproximationbyCertainPositiveLinearOperators ......... 56 2.3.1 BernsteinTypeOperators ...................................... 56 2.3.2 Bernstein–DurrmeyerTypeOperators......................... 59 vii viii Contents 2.3.3 BézierVariantoftheBernstein–Durrmeyer TypeOperators.................................................. 61 2.3.4 Bernstein–StancuTypeOperators ............................. 63 2.3.5 Lupas¸OperatorsBasedonPólyaDistribution ................ 67 3 BasicsofPost-quantumCalculus........................................... 73 3.1 Introduction ............................................................. 73 3.2 SomeNotationsofq-Calculus ......................................... 74 3.3 CertainDefinitionsof(p,q)-Calculus................................. 76 3.3.1 (p,q)-BetaFunctionofFirstKind ............................ 79 3.3.2 (p,q)-BetaFunctionofSecondKind ......................... 83 3.3.3 (p,q)-ExponentialandGammaFunction..................... 84 3.4 SomeDiscrete(p,q)Operators........................................ 85 4 (p,q)-IntegralOperators................................................... 91 4.1 KantorovichTypeOperators............................................ 91 4.1.1 (p,q)-Bernstein–KantorovichOperators...................... 91 4.1.2 (p,q)-Baskakov–KantorovichOperators ..................... 93 4.1.3 (p,q)-Szász–Mirakyan–KantorovichOperators.............. 101 4.2 DurrmeyerTypeOperators ............................................. 103 4.2.1 (p,q)-Bernstein–DurrmeyerOperators ....................... 103 4.2.2 Limit(p,q)-Bernstein–DurrmeyerOperators................. 111 4.2.3 (p,q)-Baskakov–DurrmeyerOperators....................... 121 4.2.4 (p,q)-Szász–DurrmeyerOperators............................ 124 4.2.5 (p,q)-VariantofSzász-BetaOperators ....................... 127 5 UnivariateGrüss-andOstrowski-TypeInequalitiesforPositive LinearOperators............................................................. 135 5.1 Grüss-TypeInequalitiesforaPositiveLinearFunctional............. 135 5.2 Grüss-TypeInequalitiesforSomePositiveLinearOperators......... 137 5.2.1 TheClassicalHermite–FejérInterpolationOperator ......... 141 5.2.2 TheConvolution-TypeOperator ............................... 142 5.2.3 KingOperators.................................................. 144 5.2.4 APiecewiseLinearInterpolationOperatorS ............... 146 (cid:2)n 5.3 EstimatesviaCauchy’sMeanValueTheorem......................... 147 5.4 Grüss-TypeInequalitiesonCompactMetricSpaces.................. 148 5.5 GrüssInequalitiesviaDiscreteOscillations........................... 151 5.5.1 ApplicationsforLinearOperators ............................. 152 5.5.2 Grüss-Type Inequalities via Discrete Oscillations forMoreThanTwoFunctions ................................. 156 5.6 OstrowskiInequalities .................................................. 157 6 BivariateGrüss-TypeInequalitiesforPositiveLinearOperators...... 163 6.1 BivariateLinearOperators.............................................. 163 6.1.1 BivariateBernsteinOperator................................... 163 6.1.2 BivariateSzász–MirakyanOperators.......................... 164 6.1.3 BivariateBaskakovOperators.................................. 164 Contents ix 6.1.4 BivariateKingOperators....................................... 164 6.1.5 BivariateHermite–FejérInterpolationOperators ............. 165 6.1.6 BivariateConvolutionOperators............................... 166 6.1.7 BivariatePiecewiseLinearInterpolationOperators atEquidistantKnots ............................................ 167 6.1.8 BivariateLagrangeOperator................................... 169 6.2 Grüss-TypeInequalitiesintheBivariateCase......................... 169 6.3 TheCompositeBivariateBernsteinOperators ........................ 171 6.4 ACubatureFormulaAssociatedwiththeBivariateBernstein Operators ................................................................ 176 6.5 Grüss-TypeInequalitiesviaDiscreteOscillations..................... 178 7 EstimatesfortheDifferencesofPositiveLinearOperators............. 183 7.1 DifferencesofPositiveLinearOperatorsUsingtheTaylor Expansion ............................................................... 183 7.2 InequalitiesforPositiveLinearFunctionalsandApplications........ 186 ρ 7.3 TheClassofOperatorsU ............................................. 191 n 7.4 DiscreteOperatorsAssociatedwithCertainIntegralOperators...... 194 8 BivariateOperatorsofDiscreteandIntegralType ...................... 199 8.1 BivariateOperatorsofBernsteinType................................. 199 8.1.1 BivariateCaseofq-Bernstein–Schurer–Stancu............... 204 8.2 BivariateOperatorsofKantorovichType.............................. 217 8.2.1 BivariateCaseofq-Bernstein–Schurer–Kantorovich......... 217 8.3 BivariateOperatorsofDurrmeyerType................................ 220 8.3.1 TheBivariateGeneralizationofq-Stancu–Durrmeyer TypeOperators.................................................. 220 8.3.2 BivariateofLupas¸–DurrmeyerTypeOperators............... 225 8.3.3 q-DurrmeyerOperators......................................... 228 8.3.4 Bivariateq-Bernstein–Chlodowsky–DurrmeyerOperators... 230 8.4 BivariateChlodowsky–Szász–Kantorovich–CharlierType Operators ................................................................ 233 8.5 Bivariate q-Dunkl Analogue of the Szász–Mirakjan–KantorovichOperator................................ 238 9 ConvergenceofGBSOperators............................................ 241 9.1 GeneralDefinitionsofGBSOperators................................. 241 9.2 GBSOperatorsofDiscreteType ...................................... 243 9.2.1 q-Bernstein–Schurer–StancuType............................ 243 9.2.2 BivariateChlodowsky–Szász–CharlierTypeOperators ...... 249 9.2.3 BivariateChlodowsky–Szász–AppellTypeOperators........ 250 9.2.4 NumericalExamples............................................ 255 9.2.5 BernsteinTypeinThreeVariables............................. 256 9.3 GBSOperatorsofContinuousType ................................... 261 9.3.1 q-Durrmeyer–PólyaType ...................................... 261 9.3.2 q-Bernstein–Schurer–KantorovichType ...................... 264 x Contents 9.3.3 q-Stancu–DurrmeyerType..................................... 269 9.3.4 Bernstein–Schurer–Stancu–KantorovichTypeBased onq-Integers.................................................... 270 9.3.5 Durrmeyer–Lupas¸Type ........................................ 273 9.3.6 GBSOperatorsofq-DurrmeyerType ......................... 274 9.4 GBSOperatorofChlodowsky–Szász–Kantorovich–Charlier Operators ................................................................ 276 9.4.1 q-Dunkl Analogue of the Szász–Mirakjan–KantorovichType............................ 277 Bibliography...................................................................... 279 Index............................................................................... 289 Chapter 1 Moment Generating Functions and Central Moments 1.1 SomeOperators Thissectiondealswiththemomentgeneratingfunctions(m.g.f.)andmomentsupto sixthorderofsomediscretelydefinedoperators.Wementionthem.g.f.andexpress them in expanded form to obtain moments, which are important in the theory of approximationrelevanttoproblemsofconvergence.1 1.1.1 BernsteinOperators Forf ∈C[0,1]then-thdegreeBernsteinpolynomialsaredefinedas (cid:3) (cid:4) (cid:3) (cid:4) (cid:2)n n k B (f,x) := xk(1−x)n−kf . (1.1.1) n k n k=0 By simple computation, the moment generating function of the Bernstein polynomialisgivenby 1The interested reader is referred to the works [162–166] relevant to other techniques for the approximationofmomentsoftrigonometricfunctionswithapplicationstoproblemsofanalytic numbertheory,suchasRiemann’sHypothesis. ©SpringerInternationalPublishingAG,partofSpringerNature2018 1 V.Guptaetal.,RecentAdvancesinConstructiveApproximationTheory, SpringerOptimizationandItsApplications138, https://doi.org/10.1007/978-3-319-92165-5_1
Description: