ebook img

Realization of a direct soft switching AC/AC converter for wireless power transfer applications PDF

96 Pages·2015·8.28 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Realization of a direct soft switching AC/AC converter for wireless power transfer applications

Aalto University School of Electrical Engineering Department of Electrical Engineering and Automation Simo Vuorsalo Realization of a Direct Soft Switching AC/AC Converter for Wireless Power Transfer Applications School of Electrical Engineering Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 13.11.2015 Thesis Supervisor: Professor Jorma Kyyrä Thesis Advisor: M.Sc. Ferdi Kusumah Aalto University School of Electrical Engineering Department of Electrical Engineering and Automation ABSTRACT OF THE MASTER’S THESIS School of Electrical Engineering Master’s Programme in Electronics and Electrical Engineering Author: Simo Vuorsalo Title: Realization of a Direct Soft Switching AC/AC Converter for Wireless Power Transfer Applications Date: 13.11.2015 Language: English Number of pages: 95 Professorship: Power Electronics Code: S-81 Supervisor: Professor Jorma Kyyrä Advisor: M.Sc. Ferdi Kusumah This thesis describes the design, realization and testing of a three-phase to one-phase direct AC/AC converter, also known as the matrix converter. The switching is using the soft-switching strategy which is also known in the literature as the Zero Current Switching strategy. To achieve ZCS, the circuit needs resonant behavior which is achieved by the transmitter primary side that is an LC circuit. This circuit acts as a tank circuit and the switching frequency is the resonant frequency of the LC circuit. The design of the converter was done with OrCAD capture, PSPICE and Layout. The proposed converter was designed completely during the project as well as the printed circuit boards. The wireless power transfer is achieved by using an air-cored coil pair. The receiver circuit analysis is not in the scope of this thesis. The testing of the converter was not able to perform completely while the complexity of the software prevented the project to be finished in given schedule. The partial test results are shown in the thesis. Keywords: Direct converter, Matrix converter, ZCS, Soft switching, Wireless power transfer ii Aalto University School of Electrical Engineering Department of Electrical Engineering and Automation DIPLOMITYÖN TIIVISTELMÄ Sähkötekniikan korkeakoulu Elektroniikan ja sähkötekniikan koulutusohjelma Tekijä: Simo Vuorsalo Työn nimi: Suoran AC/AC-muuttajan suunnittelu langattomiin tehonsiirtosovelluksiin Päiväys: 13.11.2015 Kieli: Englanti Sivumäärä: 95 Professuuri: Tehoelektroniikka Koodi: S-81 Valvoja: Professori Jorma Kyyrä Ohjaaja: DI Ferdi Kusumah Tämä diplomityö käsittää suoran AC-AC –muuttajan toteutuksen, suunnittelun ja testauksen. Muuttaja muuntaa kolmivaihesyötön yksivaiheiseen lähtöön. Kyseessä on matriisimuuttajan eräs sovellus. Kytkentä toimii ns. pehmeällä kytkennällä, eli kytkentähetkellä kytkimien virta on nollassa. Tämä saavutetaan kun kuormana toimii kelan ja kondensaattorin sarjaankytkentä, jonka virta toimii myös takaisinkytkentänä kytkinten ohjaukselle. Muuttajan langattoman tehonsiirron osuus toteutettiin käytännössä ilmasydämisellä kelalla. Toteutus tehtiin tässä projektissa vain ensiöpuolelle. Toisiopuolta ei tässä työssä käsitellä. Suunnittelu toteutettiin OrCAD-ohjelmistolla. Suunnittelun kannalta oleelliset piirit simuloitiin OrCAD PSPICE:llä. Lisäksi työssä esitetään komponenttiarvojen laskenta. Toteutettu laite tehtiin osana projektia, jolloin laitetta varten tehtiin myös piirilevyt. Muuttajan testausta ei ehditty tekemään loppuun annetussa aikamäärässä valmiiksi. Syynä tähän oli hilaohjauksen monimutkaisuus, joka venytti ohjelmiston kehittämistä. Osittainen testaus on esitetty työssä. Avainsanat: suora muuttaja, matriisimuuttaja, langaton tehonsiirto iii Acknowledgments I want to thank my advisor MS.c. Ferdi Kusumah who helped me significantly in order to finish this thesis. Also, I want to thank Prof. Jorma Kyyrä for giving the opportunity to join this incredibly interesting research project, and of course, all the help given during the project. The feedback was valuable when the thesis was in progress. I want to thank my former colleagues and co-students Marko Häkkinen and Konsta Ruotsalainen, whom without I probably couldn’t have been able to finish my studies. I wish them all the best during their final studies in Aalto University. Espoo 13.11.2015 Simo Vuorsalo iv Table of Contents ABSTRACT............................................................................................................................................... I TIIVISTELMÄ .......................................................................................................................................... II ACKNOWLEDGMENTS .......................................................................................................................... III TABLE OF CONTENTS ............................................................................................................................ IV ABBREVIATIONS ................................................................................................................................... VI SYMBOLS ............................................................................................................................................ VIII 1 INTRODUCTION ............................................................................................................................. 1 1.1 WIRELESS POWER TRANSFER ............................................................................................................. 1 1.2 THESIS IN BRIEF............................................................................................................................... 3 2 DIRECT CONVERTERS AND COMPONENTS ..................................................................................... 4 2.1 MATRIX CONVERTER ........................................................................................................................ 4 2.2 MATRIX CONVERTER CLASSIFICATION .................................................................................................. 6 2.3 BI-DIRECTIONAL SWITCH ................................................................................................................... 6 2.4 DRIVING OF THE BI-DIRECTIONAL SWITCH ............................................................................................ 7 2.5 CONTROL OF MATRIX CONVERTER ...................................................................................................... 9 2.6 IGBT IN SOFT SWITCHING APPLICATIONS ........................................................................................... 11 2.7 POWER TRANSMISSION CIRCUIT ....................................................................................................... 13 2.8 PROPOSED DIRECT AC/AC CONVERTER ............................................................................................. 16 2.9 THERMAL CONSIDERATIONS ............................................................................................................ 17 2.10 ALTERNATIVE SWITCH COMPONENTS ................................................................................................ 18 3 DESIGN ........................................................................................................................................ 19 3.1 TECHNICAL DESCRIPTION ................................................................................................................ 19 3.2 PRIMARY RESONANT CIRCUIT DESIGN ............................................................................................... 21 3.2.1 Inductor ................................................................................................................................ 21 3.2.2 Capacitor .............................................................................................................................. 26 3.2.3 Resistor ................................................................................................................................. 27 3.3 SWITCHING COMPONENT ................................................................................................................ 28 3.4 IGBT DRIVER ............................................................................................................................... 31 3.5 MICROCONTROLLER ....................................................................................................................... 34 v 3.6 VOLTAGE AND CURRENT MEASUREMENTS ......................................................................................... 36 3.6.1 Current Measurement .......................................................................................................... 36 3.6.2 Voltage Measurement ......................................................................................................... 37 3.7 THERMAL DESIGN .......................................................................................................................... 39 3.8 AUXILIARY COMPONENTS ................................................................................................................ 40 3.8.1 Contactor ............................................................................................................................. 40 3.8.2 EMI Filter .............................................................................................................................. 40 4 REALIZATION ............................................................................................................................... 42 4.1 RESONANT CIRCUIT ....................................................................................................................... 42 4.2 MEASUREMENT CIRCUITS ............................................................................................................... 44 4.2.1 Voltage Measurement Circuit .............................................................................................. 44 4.2.2 Current Measurement Circuit ............................................................................................... 44 4.3 SCHEMATICS ................................................................................................................................. 45 4.4 PCB ........................................................................................................................................... 46 4.4.1 PCB Specification .................................................................................................................. 46 4.5 COMPLETE PROTOTYPE ................................................................................................................... 46 4.6 MICROCONTROLLER AND SOFTWARE ................................................................................................. 47 5 TESTING ...................................................................................................................................... 50 5.1 FUNCTIONAL TESTING OF POWER SUPPLY .......................................................................................... 50 5.2 TESTING OF THE CONVERTER ............................................................................................................ 50 5.2.1 Test Equipment .................................................................................................................... 56 6 CONCLUSION ............................................................................................................................... 57 6.1 TESTING CONCLUSIONS .................................................................................................................. 58 7 FUTURE WORK ............................................................................................................................ 59 BIBLIOGRAPHY .................................................................................................................................... 61 APPENDIX A - SCHEMATICS ................................................................................................................. 64 APPENDIX B - LAYOUT ......................................................................................................................... 65 APPENDIX C – POWER SUPPLY TESTING .............................................................................................. 70 APPENDIX D - IGBT .............................................................................................................................. 75 APPENDIX E – IGBT DRIVER ................................................................................................................. 79 APPENDIX F – LITZ WIRE ...................................................................................................................... 83 vi Abbreviations AC Alternating current ADC Analog-to-Digital Converter CE Conformité Européenne DC Direct Current EMI Electromagnetic Interference ESR Equivalent Series Resistance EV Electric Vehicle FOM Figure of Merit HEV Hybrid Electric Vehicle IC Integrated Circuit IGBT Insulated Gate Bipolar Transistor MC Matrix Converter MCU Microcontroller Unit OLEV On-Line Electric Vehicle PCB Printed Circuit Board RF Radio Frequency SiC MOSFET Silicon Carbide MOSFET TIM Thermal Interface Material V2G Vehicle-to-Grid WPT Wireless Power Transfer VTR Voltage Transfer Ratio ZCS Zero Current Switching vii ZVS Zero Voltage Switching viii Symbols a,b Measures of an inductor, see Figure 13 A Area of the litz wire WIRE 𝐶 Capacitance Capacitance for primary and secondary. i = 1 for 𝐶 i primary, i = 2 for secondary 𝐶 Primary Capacitance P d Litz wire diameter with insulation 0 d Litz wire diameter without insulation l d Optimum strand diameter of the litz wire lopt Diode reverse recovery energy of the soft switching 𝐸 DRR IGBT 𝐸 Turn-off energy of the soft switching IGBT IOFF 𝐸 Turn-on energy of the soft switching IGBT ION 𝐸 Turn-off energy of an IGBT OFF 𝐸 Turn-on energy of an IGBT ON 𝐸 Reverse recovery energy of an IGBT REC 𝑓 Resonant Frequency 0 𝐹 AC/DC resistance R 𝑓 Resonant Frequency of the RLC circuit RES 𝑓 Switching Frequency SW 𝐼 Current 𝑖 i = 1 for primary, i = 2 for secondary 𝐼 Capacitor Current at nth frequency component n ix Δ𝐼 Collector current change C Δ𝐼 Current change in an IGBT diode D 𝑘 Coupling Factor k Number of wire strands of a litz wire litz Inductance for primary and secondary. i = 1 for 𝐿 i primary, i = 2 for secondary 𝐿 Primary Inductance P 𝐿 Secondary Inductance S 𝑀 Mutual Inductance N Number of wire bundles of a litz wire l N Effective number of wire layers in a litz wire ll 𝑃 Power loss of an IGBT during conduction CI 𝑃 Gate Driver Power loss GATE 𝑃 Capacitor power loss H 𝑃 Total power loss of an IGBT I 𝑃 Average power loss in 𝑊 LOSS Li 𝑃 Power loss of an IGBT diode during switching SWD 𝑃 Power loss of an IGBT during switching SWI 𝑄 Quality Factor 𝑄 Quality Factor of the Inductor i 𝑅 Resistance 𝑟 Collector to emitter dynamic resistance c 𝑟 Dynamic resistance of an IGBT diode d 𝑅 Equivalent Resistance of the WPT system secondary eq

Description:
Aalto University. School of Electrical Engineering. Department of Electrical Engineering and Automation. Simo Vuorsalo. Realization of a Direct Soft Switching AC/AC. Converter for Wireless Power Transfer Applications. School of Electrical Engineering. Thesis submitted for examination for the degree
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.