ebook img

Real Hypersurfaces in Hermitian Symmetric Spaces PDF

390 Pages·2020·4.942 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Real Hypersurfaces in Hermitian Symmetric Spaces

JürgenBerndt,YoungJinSuh RealHypersurfacesinHermitianSymmetricSpaces Advances in Analysis and Geometry | Editor in Chief Jie Xiao, Memorial University, Canada EditorialBoard Der-ChenChang,GeorgetownUniversity,USA GoongChen,TexasA&MUniversity,USA AndreaColesanti,UniversityofFlorence,Italy RobertMcCann,UniversityofToronto,Canada De-QiZhang,NationalUniversityofSingapore,Singapore KeheZhu,UniversityatAlbany,USA Volume 5 Jürgen Berndt, Young Jin Suh Real Hypersurfaces in Hermitian Symmetric Spaces | MathematicsSubjectClassification2020 53-02,53C15,53C35,53C40,53C55,53D15 Authors Prof.JürgenBerndt Prof.YoungJinSuh King’sCollegeLondon KyungpookNationalUniversity StrandCampus ResearchInstituteof LondonWC2R2LS Real&ComplexManifolds UnitedKingdom Daegu41566 [email protected] RepublicofKorea [email protected] ISBN978-3-11-068978-5 e-ISBN(PDF)978-3-11-068983-9 e-ISBN(EPUB)978-3-11-068991-4 ISSN2511-0438 LibraryofCongressControlNumber:2022930118 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2022WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface Thismonographoriginatesfromresearchcollaborationsofthetwoauthorsoverape- riodofmorethan20yearsandcoversaspectsofthegeometryofrealhypersurfaces in Hermitian symmetric spaces. The research has been motivated by an attempt to generalizeclassicaltopicsaboutthegeometryofrealhypersurfacesincomplexpro- jectivespacestootherKählermanifolds.Weinitiallyfocusedoncomplexquadricsand complex2-planeGrassmannians,andtheirnon-compactdualmanifolds,thecomplex hyperbolicquadricsandthecomplexhyperbolic2-planeGrassmannians.Morerecent researchdealswithamoregeneralapproachinHermitiansymmetricspacesofcom- pacttype. Thefocusinthismonographisontheresearchresultsobtainedbythetwoauthors andtheircollaborators,butrelatedworkisalsoincluded.Theexhaustivebibliography attheendofthemonographenablesthereadertofindrelevantliteraturewithmore details. ThesecondauthorwassupportedbyGrantProj.No.NRF-2018-R1D1A1B-05040381 fromtheNationalResearchFoundationofKorea. WewouldliketothankDr.HyunjinLeeforprovidingtechnicalsupport.Dr.Lee wassupportedbyGrantProj.No.NRF-2019-R1I1A1A-01050300fromtheNationalRe- searchFoundationofKorea. JürgenBerndt YoungJinSuh https://doi.org/10.1515/9783110689839-201 Introduction Realhypersurfacesincomplexprojectivespacesandincomplexhyperbolicspaces have been of interest to geometers since many years. A thorough introduction and overview to this topic can be found in the excellent monograph [33] by Thomas E. CecilandPatrickJ.Ryan. InthismonographweextendsomeofthisresearchtootherHermitiansymmetric spaces, with particular focus on the complex quadric Qn = SOn+2/SOnSO2 (n ≥ 3), the complex hyperbolic quadric Qn∗ = SOn,2/SOnSO2 (n ≥ 3), the complex 2-plane GrassmannianG2(ℂk+2)=SUk+2/S(UkU2)(k ≥3)andthecomplexhyperbolic2-plane GrassmannianG2∗(ℂk+2)=SUk,2/S(UkU2)(k ≥3). ThereaderisexpectedtohavepriorknowledgeofbasicconceptsofRiemannian geometryandsubmanifolds.InChapter1wereviewconceptsfromRiemanniange- ometrythataremostrelevanttothecontentsofthismonograph.Thisincludesabrief introductiontoKählergeometry,toRiemanniansymmetricspacesandtoHermitian symmetricspaces.Wewillnotprovideproofsbutreferthereadertosuitablelitera- ture.Wediscussindetailtheconstructionofcomplexquadrics,complexhyperbolic quadrics, complex 2-plane Grassmannians and complex hyperbolic 2-plane Grass- mannians. The complex quadrics and complex hyperbolic quadrics are equipped withtwogeometricstructures,namelyaKählerstructureandacirclebundleofreal structures. The complex 2-plane Grassmannians and complex hyperbolic 2-plane Grassmannians are also equipped with two geometric structures, namely a Kähler structureandaquaternionicKählerstructure.Wewillexplainhowthesegeometric structuresareconstructed,astheyareimportantfortheinvestigationsofrealhyper- surfacesinthesespaces. InChapter2wepresentrelevantbasicconceptsfromsubmanifoldgeometry.This includesthefundamentalequationsofsubmanifoldgeometry.Importantclassesof submanifoldswillbediscussed,suchastotallygeodesicsubmanifoldsandcurvature- adaptedsubmanifolds.Wewillthendescribeafundamentaltechnique,basedonJa- cobifields,forinvestigatingthegeometryoffocalsetsofhypersurfacesandoftubes aroundsubmanifolds.Inthefinalpartofthischapterwewillencounterhomogeneous hypersurfaces. InChapter3wediscussthegeometryofrealhypersurfacesinKählermanifolds. TheKählerstructureofaKählermanifoldinducesaso-calledalmostcontactmetric structureonarealhypersurfaceinthemanifold.Wediscussbasicpropertiesofal- mostcontactmetricstructuresandwhattheytellusaboutthegeometryofrealhyper- surfacesinKählermanifolds.Oneimportantingredientofanalmostcontactmetric structureisaunitvectorfieldontherealhypersurfacethatisknownastheReebvec- torfield.WhentheReebvectorfieldisaprincipalcurvaturevectoroftherealhyper- surfaceeverywhere,thentherealhypersurfaceiscalledaHopfhypersurface.Hopf hypersurfacesareimportantsubmanifoldsinKählergeometry.Wewillderivesome https://doi.org/10.1515/9783110689839-202 VIII | Introduction fundamentalequationsforHopfhypersurfacesinvolvingtheshapeoperatorandcur- vaturequantities.Wewillthenrefinetheseequationsforcontacthypersurfacesand forrealhypersurfaceswithisometricReebflow.Wewillalsoreviewsomeimportant classificationresultsforrealhypersurfacesincomplexprojectivespacesandincom- plexhyperbolicspaces,whichtosomeextentmotivatedtheresearchinthismono- graph. Inthenextfourchaptersweinvestigatethegeometryofrealhypersurfacesincom- plex2-planeGrassmannians(Chapter4),incomplexhyperbolic2-planeGrassmanni- ans(Chapter5),incomplexquadrics(Chapter6)andincomplexhyperbolicquadrics (Chapter7).Ineachofthesechapterswewillfirstderivesomebasicequationsforreal hypersurfacesinvolvingthealmostcontactmetricstructure,theshapeoperatorand curvaturequantities.Theseequationswillbefundamentalforinvestigatingthegeom- etryofrealhypersurfacesinthesespaces.Wewillthendiscusstheirtotallygeodesic submanifoldsandtheirhomogeneousrealhypersurfaces.Forsomeofthehomoge- neousrealhypersurfaceswewillinvestigatetheirgeometryinmoredetailandderive someinterestinggeometricproperties.Wewilltheninvestigateinhowfartheseho- mogeneousrealhypersurfacescanbecharacterizedbysomeoftheirgeometricprop- erties. In the final Chapter 8 we will generalize some of this to Hermitian symmetric spacesofcompacttype.Forthiswewillfirstexplainthegeneralstructuretheoryof Hermitiansymmetricspacesofcompacttype,whichinvolvesstructuretheoryofcer- tainsemisimplerealLiealgebras.Wethenapplythegeneralstructuretheorytoinves- tigaterealhypersurfaceswithisometricReebflowandcontacthypersurfaces.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.