ebook img

Real and Convex Analysis PDF

159 Pages·2013·3.49 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Real and Convex Analysis

Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics SeriesEditors: SheldonAxler SanFranciscoStateUniversity,SanFrancisco,CA,USA KennethRibet UniversityofCalifornia,Berkeley,CA,USA AdvisoryBoard: ColinC.Adams,WilliamsCollege,Williamstown,MA,USA AlejandroAdem,UniversityofBritishColumbia,Vancouver,BC,Canada RuthCharney,BrandeisUniversity,Waltham,MA,USA IreneM.Gamba,TheUniversityofTexasatAustin,Austin,TX,USA RogerE.Howe,YaleUniversity,NewHaven,CT,USA DavidJerison,MassachusettsInstituteofTechnology,Cambridge,MA,USA JeffreyC.Lagarias,UniversityofMichigan,AnnArbor,MI,USA JillPipher,BrownUniversity,Providence,RI,USA FadilSantosa,UniversityofMinnesota,Minneapolis,MN,USA AmieWilkinson,UniversityofChicago,Chicago,IL,USA UndergraduateTextsinMathematicsaregenerallyaimedatthird-andfourth-year undergraduatemathematicsstudentsatNorthAmericanuniversities.Thesetextsstrive to provide students and teachers with new perspectives and novel approaches. The books include motivation that guides the reader to an appreciation of interrelations amongdifferentaspectsofthesubject. Theyfeatureexamplesthatillustratekeycon- ceptsaswellasexercisesthatstrengthenunderstanding. Forfurthervolumes: http://www.springer.com/series/666 Erhan C¸ınlar Robert J. Vanderbei • Real and Convex Analysis 123 ErhanC¸ınlar RobertJ.Vanderbei DepartmentofOperationsResearch DepartmentofOperationsResearch andFinancialEngineering andFinancialEngineering PrincetonUniversity PrincetonUniversity Princeton,NewJersey Princeton,NewJersey USA USA ISSN0172-6056 ISBN978-1-4614-5256-0 ISBN978-1-4614-5257-7(ebook) DOI10.1007/978-1-4614-5257-7 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012950352 MathematicsSubjectClassification:MSC2010:97110,26-01,28-01,34-01,40-01,49-01,52-01 c SpringerScience+BusinessMediaNewYork2013 ⃝ Thisworkissubjecttocopyright. AllrightsarereservedbythePublisher, whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting, reproduction onmicrofilms orinanyotherphysical way, andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped. Exemptedfromthislegalreservationarebriefexcerptsinconnectionwith reviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeingenteredandexecuted onacomputersystem,forexclusiveusebythepurchaserofthework. Duplicationofthispublicationor partsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthePublisher’slocation,inits currentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Permissionsforusemaybe obtainedthroughRightsLinkattheCopyrightClearanceCenter. Violationsareliabletoprosecutionunder therespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc. inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication, neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibility foranyerrorsor omissionsthatmaybemade. Thepublishermakesnowarranty, express orimplied, withrespecttothe materialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface This book is intended to serve as a first course in analysis for scientists and engineers. It can be used either at the advanced undergraduate level or as part of thecurriculuminagraduateprogram. Wehavetaughtfrompreliminarydraftsofthe bookforseveralyears. Thebookisbuiltaroundmetricspaces.Inthefirstthreechapters,welaythefoun- dationalmaterial. Wecovertheall-important“fourCs”: convergence,completeness, compactness,andcontinuity. We haveorganizedthe materialtobe assimpleandas logicalaspossible. In subsequent chapters, we use the basic tools of analysis to give a brief intro- duction to closely related topics such as differential and integral equations, convex analysis,andmeasuretheory.Thebookisshortandyetcoversinsomedepththemost importantsubjects.Wegavecarefulconsiderationtowhattoincludeandwhattoleave out. Inallsuchconsiderations,weaskedourselveswhetherthematerialwouldbeof directandimmediateusetoscientistsandengineers. Ourphilosophyis“ifindoubt, dowithout.” Whatmakesthisbookdifferent? Wepulltogethersomeofthefoundationalma- terialonemightfind,forexample,intheclassicbookbyRudin[Rud76]withmaterial onconvexityandoptimizationatalevelcommensurate,say,withthebookbyBorwein andLewis[BL06]andwithacompletelymoderntreatmentofthebasicsofmeasure theory. Theimportanceofmeasuretheoryhasincreasedovertheyearsasstochastic modeling has become more central to all aspects of analysis. Similarly, optimiza- tionplaysaneverincreasingroleasonetriestodesignandanalyzethebestpossible “widget.” We hope that the reader will enjoy the book and learn some important mathe- matics. We would like to thank the many students whom we have had the pleasure of teachingovertheyears.WegiveaspecialthankstoJohnD’Angelo;hecarefullyread adraftofthemanuscriptandmadenumeroushelpfulsuggestions. E.C¸ınlarandR.J.Vanderbei v Contents Preface v NotationandUsage ix Chapter1. SetsandFunctions 1 A. Sets 1 B. FunctionsandSequences 4 C. Countability 6 D. OntheRealLine 9 E. Series 14 Chapter2. MetricSpaces 23 A. EuclideanSpaces 23 B. Metrics 25 C. OpenandClosedSets 29 D. Convergence 35 E. Completeness 37 F. Compactness 41 Chapter3. FunctionsonMetricSpaces 47 A. ContinuousMappings 47 B. CompactnessandUniformContinuity 52 C. SequencesofFunctions 56 D. SpacesofContinuousFunctions 59 Chapter4. DifferentialandIntegralEquations 65 A. ContractionMappings 65 B. SystemsofLinearEquations 70 C. IntegralEquations 73 D. DifferentialEquations 80 Chapter5. Convexity 85 A. ConvexSetsandConvexFunctions 85 B. Projections 88 vii viii Contents C. SupportingHyperplaneTheorem 91 D. LegendreTransform 92 E. InfimalConvolution 98 Chapter6. ConvexOptimization 101 A. PrimalandDualProblems 101 B. LinearProgrammingandPolyhedra 106 C. Lagrangians 108 D. SaddlePoints 109 Chapter7. MeasureandIntegration 115 A. Algebras 115 B. MeasurableSpacesandFunctions 118 C. Measures 125 D. Integration 131 E. TransformsandIndefiniteIntegrals 141 F. KernelsandProductSpaces 146 FurtherReading 155 Bibliography 157 Index 159 Notation and Usage We use the terms “positive” and “negative”in their wide sense: positive means 0, negative means 0. Similarly, “increasing” means x y implies f(x) ≥ ≤ ≤ ≤ f(y). Ifstrictinequalitieshold,wesay“strictlypositive,”“strictlynegative,”“strictly increasing,”etc. Hereisalistoffrequentlyusednotations. :Theemptyset. ∅ N= 0,1,2,... :Thesetofnaturalnumbers. { } N∗ = 1,2,3,... :Thesetofstrictlypositiveintegers. { } Z= 0,1, 1,2, 2,... :Thesetofintegers. { − − } Q={x : x= mn forsomeminZandsomeninN∗}:Thesetofrationals. R=( , )= x: <x<+ :Thesetofreals. −∞ ∞ { −∞ ∞} R+ =[0, )= x R:x 0 :Thesetofpositivereals. ∞ { ∈ ≥ } R∗ =( , ]: Thesetofrealsandplusinfinity. R¯ =[ −∞, ∞]: Thesetofextendedreals. −∞ ∞ [a,b]= x R:a x b :Theclosedintervalwithendpointsaandb. { ∈ ≤ ≤ } (a,b)= x R:a<x<b :Theopenintervalwithendpointsaandb. { ∈ } log(x): Thenaturallogarithmofx. x y = nx y : Theinnerproductofxandy. · 1 i i x =√x x: TheEuclideannormofx. ∥ ∥ ! · :Thesetofcontinuousfunctions. C d(x,y): Thedistancefromxtoy. B(x,r)= y :d(x,y)<r : Theopenballcenteredonxofradiusr. { } A : TheinteriorofthesetA. ◦ A¯: TheclosureofthesetA. ∂A:TheboundaryofthesetA. fˆ: TheLegendretransformofthefunctionf. f⋆g :Theinfimalconvolutionofthefunctionsf andg. x y: Theminimumoftherealnumbersxandy. ∧ x y: Themaximumoftherealnumbersxandy. ∨ 1 : TheindicatorfunctionofthesetA. A (E):TheBorelσ-algebraonthemetricspaceE. B ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.