Undergraduate Texts in Mathematics Editorial Board S. Axler K.A. Ribet For other titles published in this series, go to http://www.springer.com/series/666 Kenneth R. Davidson Allan P. Donsig Real Analysis and Applications Theory in Practice Kenneth R. Davidson Allan P. Donsig Department of Pure Mathematics Department of Mathematics University of Waterloo University of Nebraska-Lincoln Ontario N2L 3G1 Lincoln, NE 68588 Canada USA [email protected] [email protected] Editorial Board S. Axler K.A. Ribet Mathematics Department Mathematics Department San Francisco State University University of California at Berkeley San Francisco, CA 94132 Berkeley, CA 94720-3840 USA USA [email protected] [email protected] ISSN 0172-6056 ISBN978-0-387-98097-3 e-ISBN978-0-387-98098-0 DOI10.1007/978-0-387-98098-0 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009932895 Mathematics Subject Classification (2000): 26Exx, 26E40 ©SpringerScience + BusinessMedia,LLC2010 Allrightsreserved. Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper Springer is part of Springer Science+Business Media (www.springer.com) ToVirginiaandStephanie Preface Thisbookprovidesanintroductionbothtorealanalysisandtoarangeofimportant applications that depend on this material. Three-fifths of the book is a series of essentiallyindependentchapterscoveringtopicsfromFourierseriesandpolynomial approximation to discrete dynamical systems and convex optimization. Studying theseapplicationscan,webelieve,bothimproveunderstandingofrealanalysisand prepareformoreintensiveworkineachtopic.Thereisenoughmaterialtoallowa choiceofapplicationsandtosupportcoursesatavarietyoflevels. ThisbookisasubstantialrevisionofRealAnalysiswithRealApplications,which waspublishedin2001byPrenticeHall.Themajorchangeinthisversionisagreater emphasis on the latter part of the book, focussed on applications. A few of these chapterswouldmakeagoodsecondcourseinrealanalysisthroughtheopticofone ormoreappliedareas.Anysinglechaptercanbeusedforaseniorseminar. Thefirstpartofthebookcontainsthecoreresultsofafirstcourseinrealanalysis. This background is essential to understanding the applications. In particular, the notionsoflimitandapproximationaretwosidesofthesamecoin,andthisinterplay iscentraltothewholebook.Severaltopicsnotneededfortheapplicationsarenot included in the book but are available online, at both this book’s official website www.springer.com/978-0-387-98097-3andourownpersonalwebsites, www.math.uwaterloo.ca/∼krdavids/and www.math.unl.edu/∼adonsig1/. Theapplicationshavebeenchosenfrombothclassicalandmoderntopicsofin- terestinappliedmathematicsandrelatedfields.Ourgoalistodiscussthetheoretical underpinnings of these applied areas, showing the role of the fundamental princi- ples of analysis. This is not a methods course, although some familiarity with the computationalormethods-orientedaspectsofthesetopicsmayhelpthestudentap- preciate how the topics are developed. In each application, we have attempted to gettoanumberofsubstantialresults,andtoshowhowtheseresultsdependonthe theory. Thisbookbeganin1984whenthefirstauthorwroteashortsetofcoursenotes (120pages)forarealanalysisclassattheUniversityofWaterloodesignedforstu- dentswhocameprimarilyfromappliedmathandcomputerscience.Theideawasto vii viii Preface gettothebasicresultsofanalysisquickly,andthenillustratetheirroleinavariety ofapplications.Atthattime,theapplicationswerelimitedtopolynomialapproxi- mation,Newton’smethod,differentialequations,andFourierseries. Aplanevolvedtoexpandthesenotesintoatextbooksuitableforaone-ortwo- semestercourse.Weexpandedboththetheoreticalsectionandthechoiceofappli- cations in order to make the text more flexible. As a consequence, the text is not uniformly difficult. The material is arranged by topic, and generally each chapter getsmoredifficultasoneprogressesthroughit.Theinstructorcanomitsomemore difficulttopicsintheearlychaptersiftheywillnotbeneededlater. Weemphasizetheroleofnormedvectorspacesinanalysis,sincetheyprovidea naturalframeworkformostoftheapplications.Sosomeknowledgeoflinearalgebra isneeded.Ofcourse,thereaderalsoshouldhaveareasonableworkingknowledge ofdifferentialandintegralcalculus.Whilemultivariablecalculusisanassetbecause oftheincreasedlevelofsophisticationandtheincorporationoflinearalgebra,itis notessential.Someofthisbackgroundmaterialisoutlinedinthereviewchapter. By and large, the various applications are independent of each other. However, therearereferencestomaterialinotherchapters.Forexample,inthewaveletschap- ter(Chapter15),itseemsessentialtomakecomparisonswiththeclassicalapproxi- mationresultsforFourierseriesandforpolynomials. It is possible to use an application chapter on its own for a student seminar or topics course. We have included several modern topics of interest in addition to the classical subjects of applied mathematics. The chapter on discrete dynamical systems (Chapter 11) introduces the notions of chaos and fractals and develops a numberofexamples.Thechapteronwavelets(Chapter15)illustratestheideaswith theHaarwavelet.Itcontinueswithaconstructionofwaveletsofcompactsupport, andgivesacompletetreatmentofasomewhateasiercontinuouswavelet.Inthefinal chapter(Chapter16),westudyconvexoptimizationandconvexprogramming.Both oftheselatterchaptersrequiremorelinearalgebrathantheothers. We would like to thank various people who worked with early versions of this bookfortheirhelpfulcomments,inparticular,RobertAndre´,JohnBaker,JonBor- wein, Ola Bratteli, Brian Forrest, John Holbrook, Stephen Krantz, Michael Lam- oureux, Leo Livshits, Mike McAsey, Robert Manning, John Orr, Justin Peters, GabrielPrajitura,DavidSeigel,EdVrscay,andFrankZorzitto.Wealsothankour students Geoffrey Crutwell, Colin Davidson, Sean Desaulniers, Masoud Kamgar- pour, Michael Lipnowski, and Alex Wright for working through parts of the book andsolvingmanyoftheexercises.Wealsothankthestudentsinvariousclassesat theUniversityofWaterlooandattheUniversityofNebraska,whereearlyversions ofthetextwereusedandtested. Wewelcomecommentsonthisbook. Waterloo,ON&Lincoln,NE KennethR.Davidson March,2009 AllanP.Donsig Contents PartA Analysis 1 Review ........................................................ 3 1.1 Calculus.................................................. 3 1.2 LinearAlgebra ............................................ 5 1.3 Appendix:EquivalenceRelations............................. 7 2 TheRealNumbers.............................................. 9 2.1 AnOverviewoftheRealNumbers ........................... 9 2.2 TheRealNumbersandTheirArithmetic....................... 10 2.3 TheLeastUpperBoundPrinciple ............................ 13 2.4 Limits ................................................... 15 2.5 BasicPropertiesofLimits................................... 19 2.6 MonotoneSequences....................................... 20 2.7 Subsequences ............................................. 23 2.8 CauchySequences ......................................... 27 2.9 CountableSets ............................................ 31 3 Series ......................................................... 35 3.1 ConvergentSeries.......................................... 35 3.2 ConvergenceTestsforSeries ................................ 39 3.3 AbsoluteandConditionalConvergence........................ 44 ix x Contents 4 TopologyofRn ................................................. 48 4.1 n-DimensionalSpace....................................... 48 4.2 ConvergenceandCompletenessinRn ......................... 52 4.3 ClosedandOpenSubsetsofRn .............................. 56 4.4 CompactSetsandtheHeine–BorelTheorem ................... 61 5 Functions...................................................... 67 5.1 LimitsandContinuity ...................................... 67 5.2 DiscontinuousFunctions.................................... 72 5.3 PropertiesofContinuousFunctions ........................... 77 5.4 CompactnessandExtremeValues ............................ 80 5.5 UniformContinuity ........................................ 82 5.6 TheIntermediateValueTheorem ............................. 88 5.7 MonotoneFunctions ....................................... 90 6 DifferentiationandIntegration................................... 94 6.1 DifferentiableFunctions .................................... 94 6.2 TheMeanValueTheorem................................... 99 6.3 RiemannIntegration........................................103 6.4 TheFundamentalTheoremofCalculus........................109 7 NormsandInnerProducts.......................................113 7.1 NormedVectorSpaces......................................113 7.2 TopologyinNormedSpaces.................................117 7.3 Finite-DimensionalNormedSpaces...........................120 7.4 InnerProductSpaces .......................................124 7.5 FiniteOrthonormalSets ....................................128 7.6 FourierSeries .............................................132 7.7 OrthogonalExpansionsandHilbertSpaces.....................136 8 LimitsofFunctions .............................................142 8.1 LimitsofFunctions ........................................142 8.2 UniformConvergenceandContinuity .........................147 8.3 UniformConvergenceandIntegration.........................150 8.4 SeriesofFunctions.........................................154 8.5 PowerSeries ..............................................161 8.6 CompactnessandSubsetsofC(K)............................168 9 MetricSpaces ..................................................175 9.1 DefinitionsandExamples ...................................175 9.2 CompactMetricSpaces.....................................180 9.3 CompleteMetricSpaces ....................................183 Contents xi PartB Applications 10 ApproximationbyPolynomials...................................189 10.1 TaylorSeries..............................................189 10.2 HowNottoApproximateaFunction..........................198 10.3 Bernstein’sProofoftheWeierstrassTheorem ..................201 10.4 AccuracyofApproximation .................................204 10.5 ExistenceofBestApproximations............................207 10.6 CharacterizingBestApproximations ..........................211 10.7 ExpansionsUsingChebyshevPolynomials.....................217 10.8 Splines...................................................223 10.9 UniformApproximationbySplines...........................231 10.10 TheStone–WeierstrassTheorem .............................235 11 DiscreteDynamicalSystems .....................................240 11.1 FixedPointsandtheContractionPrinciple .....................241 11.2 Newton’sMethod..........................................252 11.3 OrbitsofaDynamicalSystem ...............................257 11.4 PeriodicPoints ............................................262 11.5 ChaoticSystems...........................................269 11.6 TopologicalConjugacy .....................................277 11.7 IteratedFunctionSystems...................................285 12 DifferentialEquations...........................................293 12.1 IntegralEquationsandContractions ..........................293 12.2 CalculusofVector-ValuedFunctions..........................297 12.3 DifferentialEquationsandFixedPoints .......................300 12.4 SolutionsofDifferentialEquations ...........................304 12.5 LocalSolutions............................................309 12.6 LinearDifferentialEquations ................................316 12.7 PerturbationandStabilityofDEs.............................320 12.8 ExistenceWithoutUniqueness ...............................324 13 FourierSeriesandPhysics.......................................328 13.1 TheSteady-StateHeatEquation..............................328 13.2 FormalSolution ...........................................332 13.3 ConvergenceintheOpenDisk ...............................334 13.4 ThePoissonFormula.......................................337 13.5 Poisson’sTheorem.........................................341 13.6 TheMaximumPrinciple ....................................345 13.7 TheVibratingString(FormalSolution)........................347 13.8 TheVibratingString(RigorousSolution) ......................353 13.9 Appendix:TheComplexExponential .........................356
Description: