ebook img

Rays, waves, and scattering: Topics in classical mathematical physics PDF

606 Pages·2017·3.864 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Rays, waves, and scattering: Topics in classical mathematical physics

Rays, Waves, and Scattering Topics in Classical Mathematical Physics John A. Adam PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright(cid:2)c 2017byPrincetonUniversityPress PublishedbyPrincetonUniversityPress,41WilliamStreet, Princeton,NewJersey08540 IntheUnitedKingdom: PrincetonUniversityPress,6OxfordStreet, Woodstock,OxfordshireOX201TR press.princeton.edu Jacketphotographcourtesyoftheauthor AllRightsReserved ISBN978-0-691-14837-3 LibraryofCongressControlNumber2017934760 BritishLibraryCataloging-in-PublicationDataisavailable ThisbookhasbeencomposedinTimesNewRoman Printedonacid-freepaper∞ TypesetbyNovaTechsetPvtLtd,Bangalore,India PrintedintheUnitedStatesofAmerica 10987654321 Whichisthewaytotheplacewherelightisscatteredandtheeast windisspreadacrosstheearth? Job38:24 Contents Preface xvii Acknowledgments xxiii Chapter1 Introduction 1 1.1 TheRainbowDirectory 3 1.1.1 TheMultifacetedRainbow 3 1.2 AMathematicalTasteofThingstoCome 5 1.2.1 Rays 5 1.2.2 Waves 6 1.2.3 Scattering(Classical) 7 1.2.4 Scattering(Semiclassical) 9 1.2.5 CausticsandDiffractionCatastrophes 11 PARTI. RAYS 15 Chapter2 Introductiontothe“Physics”ofRays 17 2.1 WhatIsaRay? 17 2.1.1 SomeMathematicalDefinitions 18 2.1.2 GeometricWavefronts 19 2.1.3 Fermat’sPrinciple 21 2.1.4 TheIntensityLaw 21 2.1.5 HeuristicDerivationofSnell’sLaws 23 2.1.6 Generalization 24 2.2 GeometricandOtherProofsofSnell’sLawsofReflection andRefraction 25 2.2.1 TheLawofReflection 25 2.2.2 TheLawofRefraction 26 2.2.3 AWave-TheoreticProof 28 2.2.4 AnAlgebraicProof 29 Chapter3 IntroductiontotheMathematicsofRays 33 3.1 Background 33 3.2 TheMethodofCharacteristics 34 viii • CONTENTS 3.3 IntroductiontoHamilton-JacobiTheory 37 3.3.1 Hamilton’sPrinciple 39 3.3.2 RaysandCharacteristics 39 3.3.3 TheOpticalPathLengthRevisited 43 3.4 RayDifferentialGeometryandtheEikonalEquationAgain 46 3.4.1 TheMirageTheoremforHorizontallyStratifiedMedia 49 3.4.2 AReturntoSphericallySymmetricMedia: n(r)Continuous 51 3.5 DispersionRelations: AWave-RayConnection 54 3.5.1 FourierTransformsandDispersionRelations 55 3.5.2 TheBottomLine 56 3.5.3 ApplicationstoAtmosphericWaves 61 3.6 GeneralSolutionoftheLinearWaveEquation: SomeAsymptotics 64 3.6.1 StationaryPhase 64 3.6.2 AsymptoticsforOscillatorySources: Wavenumber Surfaces 65 3.7 RaysandWavesinaSlowlyVaryingEnvironment 70 3.7.1 SomeConsequences 71 3.7.2 WavepacketsandtheGroupSpeedRevisited 75 Chapter4 RayOptics: TheClassicalRainbow 76 4.1 PhysicalFeaturesandHistoricalDetails: ASummary 76 4.2 RayTheoryoftheRainbow: ElementaryMathematical Considerations 78 4.2.1 SomeNumericalValues 84 4.2.2 PolarizationoftheRainbow 85 4.2.3 TheDivergenceProblem 87 4.3 RelatedTopicsinMeteorologicalOptics 89 4.3.1 TheGlory 89 4.3.2 Coronas(Simplified) 92 4.3.3 RayleighScattering—aDimensionalAnalysisArgument 93 Chapter5 AnImprovementoverRayOptics: Airy’sRainbow 95 5.1 TheAiryApproximation 95 5.1.1 SomeRayPrerequisites 95 5.1.2 TheAiryWavefront 100 5.1.3 HowAreColorsDistributedintheAiryRainbow? 104 5.1.4 TheAiryWavefront: ADerivationforArbitraryp 105 Chapter6 DiffractionCatastrophes 113 6.1 BasicGeometryoftheFoldandCuspCatastrophes 114 6.1.1 TheFold 114 6.1.2 TheCusp 115 6.2 ABetterApproximation 122 6.2.1 TheFresnelIntegrals 124 CONTENTS • ix 6.3 TheFoldDiffractionCatastrophe 126 6.3.1 TheRainbowasaFoldCatastrophe 128 6.4 Caustics: TheAiryIntegralintheComplexPlane 130 6.4.1 TheNatureofAi(X) 133 Chapter7 IntroductiontotheWKB(J)Approximation: AllThingsAiry 137 7.1 Overview 137 7.1.1 EliminationoftheFirstDerivativeTerm 139 7.1.2 TheLiouvilleTransformation 141 7.1.3 TheOne-DimensionalSchrödingerEquation 143 7.1.4 PhysicalInterpretationoftheWKB(J)Approximation 144 7.1.5 TheWKB(J)ConnectionFormulas 145 7.1.6 ApplicationtoaPotentialWell 148 7.2 TechnicalDetails 149 7.3 MatchingAcrossaTurningPoint 152 7.4 ALittleMoreaboutAiryFunctions 153 7.4.1 RelationtoBesselFunctions 154 7.4.2 TheAiryIntegralandRelatedTopics 156 7.4.3 RelatedIntegrals 159 Chapter8 IslandRays 162 8.1 StraightandParallelDepthContours 163 8.1.1 PlaneWaveIncidentonaRidge 164 8.1.2 WaveTrappingonaRidge 166 8.2 CircularDepthContours 167 8.3 ConstantPhaseLines 169 8.3.1 Case1 169 8.3.2 Case2 170 8.3.3 Case3 170 8.4 WavesandCurrents 170 Chapter9 SeismicRays 173 9.1 SeismicRayEquations 173 9.2 RayPropagationinaSphericalEarth 175 9.2.1 AHorizontallyStratifiedEarth 178 9.2.2 TheWiechert-HerglotzInversion 179 9.2.3 Further Properties of X in the Horizontally Stratified Case 181 PARTII WAVES 187 Chapter10 ElasticWaves 189 10.1 BasicNotation 190 10.2 PlaneWaveSolutions 193 x • CONTENTS 10.3 Surfacewaves 195 10.4 LoveWaves 198 Chapter11 SurfaceGravityWaves 200 11.1 TheBasicFluidEquations 201 11.2 TheDispersionRelation 203 11.2.1 DeepWaterWaves 203 11.2.2 ShallowWaterWaves 204 11.2.3 Instability 205 11.2.4 GroupSpeedAgain 210 11.2.5 Wavepackets 212 11.3 ShipWaves 214 11.3.1 HowDoesDispersionAffecttheWavePattern ProducedbyaMovingObject? 214 11.3.2 Whitham’sShipWaveAnalysis 218 11.3.3 AGeometricApproachtoShipWavesandWakes 221 11.3.4 ShipWavesinShallowWater 227 11.4 ADiscreteApproach 229 11.4.1 LongWaves 229 11.4.2 ShortWaves 230 11.5 FurtherAnalysisforSurfaceGravityWaves 231 Chapter12 OceanAcoustics 237 12.1 OceanAcousticWaveguides 237 12.1.1 TheGoverningEquation 237 12.1.2 LowVelocityCentralLayer 239 12.1.3 LeakyModes 240 12.2 One-DimensionalWavesinanInhomogeneousMedium 241 12.2.1 AnEigenfunctionExpansion 242 12.2.2 Poles 245 12.3 ModelforaStratifiedFluid: CylindricalGeometry 247 12.4 TheSech-SquaredPotentialWell 250 12.4.1 PositiveEnergyStates 250 12.4.2 BoundStates 253 Chapter13 Tsunamis 255 13.1 MathematicalModelofTsunamiPropagation(TransientWaves) 255 13.2 TheBoundary-ValueProblem 257 13.3 SpecialCaseI:TsunamiGenerationbyaDisplacement oftheFreeSurface 258 13.3.1 ADigression: SurfaceWavesonDeepWater(Again) 263 13.3.2 HowFastDoestheWaveEnergyPropagate? 265 13.3.3 KinematicsAgain 267 13.4 LeadingWavesDuetoaTransientDisturbance 268 13.5 SpecialCase2: TsunamiGenerationbyaDisplacement oftheSeafloor 270 CONTENTS • xi Chapter14 AtmosphericWaves 273 14.1 GoverningLinearizedEquations 274 14.2 AMathematicalModelofLee/MountainWavesover anIsolatedMountainRidge 285 14.2.1 BasicEquationsandSolutions 286 14.2.2 AnIsolatedRidge 288 14.2.3 TrappedLeeWaves 290 14.3 BillowClouds,WindShear,andHoward’sSemicircleTheorem 292 14.4 TheTaylor-GoldsteinEquation 296 PARTIII CLASSICALSCATTERING 299 Chapter15 TheClassicalConnection 301 15.1 Lagrangians,Action,andHamiltonians 301 15.2 TheClassicalWaveEquation 304 15.3 ClassicalScattering: ScatteringAnglesandCrossSections 308 15.3.1 Overview 308 15.3.2 TheClassicalInverseScatteringProblem 313 Chapter16 GravitationalScattering 316 16.1 PlanetaryOrbits: ScatteringbyaGravitationalField 317 16.1.1 RepulsiveCase: k >0 318 16.1.2 AttractiveCase: k <0 319 16.1.3 TheOrbits 319 16.2 TheHamilton-JacobiEquationforaCentralPotential 325 16.2.1 TheKeplerProblemRevisited 326 16.2.2 Generalizations 327 16.2.3 HardSphereScattering 328 16.2.4 RutherfordScattering 329 Chapter17 ScatteringofSurfaceGravityWavesbyIslands,Reefs, andBarriers 332 17.1 TrappedWaves 333 17.2 TheScatteringMatrixS(α) 334 17.3 TrappedModes: ImaginaryPolesofS(α) 337 17.4 PropertiesofS(α)forα ∈R 338 17.5 SubmergedCircularIslands 340 17.6 EdgeWavesonaSlopingBeach 342 17.6.1 One-DimensionalEdgeWavesonaConstantSlope 345 17.6.2 WaveAmplicationbyaSlopingBeach 345 xii • CONTENTS Chapter18 AcousticScattering 348 18.1 ScatteringbyaCylinder 350 18.2 Time-AveragedEnergyFlux: ALittleBitofPhysics 352 18.3 TheImpenetrableSphere 354 18.3.1 Introduction: SphericallySymmetricGeometry 354 18.3.2 TheScatteringAmplitudeRevisited 356 18.3.3 TheOpticalTheorem 358 18.3.4 TheSommerfeldRadiationCondition 358 18.4 RigidSphere: SmallkaApproximation 359 18.5 AcousticRadiationfromaRigidPulsatingSphere 361 18.6 TheSoundofMountainStreams 364 18.6.1 BubbleCollapse 367 18.6.2 PlayingwithMathematicalBubbles 369 Chapter19 ElectromagneticScattering: TheMieSolution 371 19.1 Maxwell’sEquationsofElectromagneticTheory 378 19.2 TheVectorHelmholtzEquationforElectromagneticWaves 379 19.3 TheLorentz-Miesolution 383 19.3.1 ConstructionoftheSolution 386 19.3.2 TheRayleighScatteringLimit: ACondensedDerivation 392 19.3.3 TheRadiationFieldGeneratedbyaHertzianDipole 394 Chapter20 DiffractionofPlaneElectromagneticWavesbyaCylinder 397 20.1 ElectricPolarization 398 20.2 MoreaboutClassicalDiffraction 406 20.2.1 Huygen’sPrinciple 406 20.2.2 TheKirchhoff-HuygensDiffractionIntegral 406 20.2.3 DerivationoftheGeneralizedAiryDiffractionPattern 409 PARTIV SEMICLASSICALSCATTERING 413 Chapter21 TheClassical-to-SemiclassicalConnection 415 21.1 Introduction: ClassicalandSemiclassicalDomains 415 21.2 Introduction: TheSemiclassicalFormulation 416 21.2.1 TheTotalScatteringCrossSection 418 21.2.2 ClassicalWaveConnections 419 21.3 TheScalarWaveEquation 420 21.3.1 SeparationofVariables 420 21.3.2 Bauer’sExpansionAgain 422 21.4 TheRadialEquation: FurtherDetails 423 21.5 SomeExamples 426 21.5.1 ScatteringbyaOne-DimensionalPotentialBarrier 426 21.5.2 TheRadiallySymmetricProblem: PhaseShifts andthePotentialWell 428 CONTENTS • xiii Chapter22 TheWKB(J)ApproximationRevisited 434 22.1 TheConnectionFormulasrevisited: AnAlternativeApproach 435 22.2 Tunneling: APhysicalDiscussion 437 22.3 ATriangularBarrier 438 22.4 MoreNutsandBolts 440 22.4.1 ThePhaseShift 445 22.4.2 SomeCommentsonConvergence 445 22.4.3 TheTransitiontoClassicalScattering 446 22.5 CoulombScattering: TheAsymptoticSolution 448 22.5.1 ParabolicCylindricalCoordinates(ξ,η,φ) 449 22.5.2 AsymptoticFormof F (−iμ,1;ikξ) 450 1 1 22.5.3 TheSphericalCoordinateSystemRevisited 451 22.6 CoulombScattering: TheWKB(J)Approximation 453 22.6.1 CoulombPhases 453 22.6.2 FormalWKB(J)SolutionsfortheTIRSE 454 22.6.3 TheLangerTransformation: FurtherJustification 456 Chapter23 ASturm-LiouvilleEquation: TheTime-Independent One-DimensionalSchrödingerEquation 459 23.1 VariousTheorems 460 23.2 BoundStates 463 23.2.1 Bound-StateTheorems 463 23.2.2 ComplexEigenvalues: IdentitiesforIm(λn)andRe(λn) 467 23.2.3 FurtherTheorems 468 23.3 Weyl’sTheorem: LimitPointandLimitCircle 471 PARTV SPECIALTOPICSINSCATTERINGTHEORY 475 Chapter24 TheS-MatrixandItsAnalysis 477 24.1 ASquareWellPotential 477 24.1.1 TheBoundStates 480 24.1.2 SquareWellResonance: AHeuristicDerivation oftheBreit-WignerFormula 480 24.1.3 TheWatsonTransformandReggePoles 481 24.2 MoreDetailsfortheTIRSE 487 24.3 Levinson’sTheorem 489 Chapter25 TheJostSolutions: TechnicalDetails 491 25.1 OnceMoretheTIRSE 491 25.2 TheRegularSolutionAgain 494 25.3 PolesoftheS-Matrix 498 25.3.1 WavepacketApproach 501

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.