Rate theory of acceleration of defect annealing driven by discrete breathers VladimirI.Dubinko,JuanF.R.Archilla,SergeyV.Dmitriev,and VladimirHizhnyakov 1 Introduction............................................................. 2 2 Discretebreathersinmetalsandsemiconductors .............................. 2 3 DBexcitationunderthermalequilibriumandexternaldriving ................... 9 4 AmplificationofSb-vacancyannealingrateingermaniumbyDBs ............... 12 5 Summary ............................................................... 16 References ..................................................................... 17 AbstractNovelmechanismsofdefectannealinginsolidsarediscussed,whichare basedonthelargeamplitudeanharmoniclatticevibrations,a.k.a.intrinsiclocalized modes or discrete breathers (DBs). A model for amplification of defect annealing rate in Ge by low energy plasma-generated DBs is proposed, in which, based on recentatomisticmodelling,itisassumedthatDBscanexciteatomsarounddefects rather strongly, giving them energy ≫k T for (cid:24)100 oscillation periods. This is B shown to result in the amplification of the annealing rates proportional to the DB flux, i.e. to the flux of ions (or energetic atoms) impinging at the Ge surface from inductivelycoupledplasma(ICP). Key words: Anharmonic lattice vibrations, discrete breathers, intrinsic localized modes,defectannealing V.I.Dubinko NSC Kharkov Institute of Physics and Technology, Akademicheskya Str. 1, Kharkov 61108, Ukraine,e-mail:[email protected] J.F.R.Archilla GroupofNonlinearPhysics,UniversidaddeSevilla,ETSIInforma´tica,Avda.ReinaMercedess/n 41011,Seville,Spain,e-mail:[email protected] S.V.Dmitriev InstituteforMetalsSuperplasticityProblems,RAS,KhalturinStr.39,Ufa450001,Russia National Research Tomsk State University, Lenin Prospekt 36, Tomsk 634050, Russia, e-mail: [email protected] V.Hizhnyakov Institute of Physics, University of Tartu, Riia 142, EE-51014 Tartu, Estonia, e-mail: hizh@fi.tartu.ee 1 2 V.I.Dubinko,J.F.R.Archilla,S.V.DmitrievandV.Hizhnyakov 1 Introduction A defect lying in the band gap with energy > 0:1 eV from either band edge is termeddeep.AsknownfromthestudiesofpropertiesofdefectsinGe[1,2,4,5,30], Ar ions arriving at a semiconductor surface with very low energy (2 - 8 eV) are annihilating defects deep inside the semiconductor. Several different defects were removedormodifiedinSb-dopedgermanium,ofwhichtheE-centerhasthehigh- estconcentration,asdescribedindetailsinRef.[1,2].Novelmechanismsofdefect annealinginsolidsarediscussedinthiswork,whicharebasedonthelargeampli- tude anharmonic lattice vibrations, a.k.a. intrinsic localized modes (ILMs) or dis- cretebreathers(DBs).Thearticleisorganizedasfollows.InSect.2,ashortreview onDBpropertiesinmetalsandsemiconductorsispresentedbasedontheresultsof molecular dynamics (MD) simulations using realistic many-body interatomic po- tentials.InSect.3,aratetheoryofDBexcitationunderthermalheatingandunder non-equilibriumgasloadingconditionsisdeveloped.InSect.4,amodelforampli- fication of defect annealing rate in Ge by plasma-generated DBs is proposed and comparedwithexperimentaldata.TheresultsaresummarizedinSect.5. 2 Discretebreathersinmetalsandsemiconductors DBsarespatiallylocalizedlarge-amplitudevibrationalmodesinlatticesthatexhibit stronganharmonicity[14,20,33,35].Theyhavebeenidentifiedasexactsolutionsto a number of model nonlinear systems possessing translational symmetry [14] and successfullyobservedexperimentallyinvariousphysicalsystems[14,29].Presently theinterestofresearchershasshiftedtothestudyoftheroleofDBsinsolidstate physicsandtheirimpactonthephysicalpropertiesofmaterials[9,10,12,13,29,36]. UntilrecentlytheevidencefortheDBexistenceprovidedbydirectatomisticsim- ulations, e.g. MD, was restricted mainly to one and two-dimensional networks of coupled nonlinear oscillators employing oversimplified pairwise inter-particle po- tentials [14,20,33]. Studies of the DBs in three-dimensional systems by means of MD simulations using realistic interatomic potentials include ionic crystals with NaCl structure [21,25], graphene [6,23,27], graphane [28], semiconductors [37], pure metals [15,18,32,36], and ordered alloys [31]. For the first time the density functional theory (DFT) was applied to the study of DBs, using graphane as an example[7]. DBs have very long lifetime because their frequencies lie outside the phonon band. Monatomic crystals like pure metals and semiconductors such as Si and Ge donotpossessgapsinthephononspectrum,whilecrystalswithcomplexstructure oftenhavesuchgaps,forexample,diatomicalkalihalidecrystalsandorderedalloys withalargedifferenceintheatomicmassofthecomponents.Forthecrystalspos- sessingagapinthephononspectrumtheso-calledgapDBswithfrequencieswithin thegapcanbeexcited.Thiscasewillnotbediscussedhereandinthefollowingwe focusontheDBshavingfrequenciesabovethephononband. Ratetheoryofaccelerationofdefectannealingdrivenbydiscretebreathers 3 2.1 Metals IntheworkbyKiselevetal.[24]ithasbeendemonstratedthat1Dchainofparticles interactingwiththenearestneighborsviaclassicalpairwisepotentialssuchasToda, Lennadrd-Jones or Morse cannot support DBs with frequencies above the phonon band.TheywereabletoexciteonlygapDBswithfrequencieslyingwithinthegap ofthephononspectrumbyconsideringdiatomicchains.Inlinewiththeresultsof this work, it was accepted for a long time that the softening of atomic bonds with increasingvibrationalamplitudeisageneralpropertyofcrystals,whichmeansthat theoscillationfrequencydecreaseswithincreasingamplitude.ThereforeDBswith frequenciesabovethetopphononfrequencywereunexpected. However, in 2011, Haas et al. [15] have demonstrated by MD simulations us- ingrealisticmany-bodyinteratomicpotentialsthatDBswithfrequenciesabovethe phonon spectrum can be excited in fcc Ni as well as in bcc Nb and Fe [15,18]. SimilarresultswereobtainedforbccFe,V,andW[32]. The point is that the realistic interatomic potentials, including Lennard-Jones and Morse, have an inflection point meaning that they are composed of the hard core and the soft tail. This is typical for interatomic bonds of any complexity, in- cluding many-body potentials. Physically the soft tail is due to the interaction of theouterelectronshellsoftheatoms,whilethehardcoreoriginatesfromthestrong repulsiveforcesbetweennucleiandalsofromthePauliexclusionprincipleforinner electrons(fermions)thatcannotoccupythesamequantumstatesimultaneously.It is thus important which part of the interatomic potential (hard or soft) contributes moretothedynamicsofthesystem.Asitwasshownin[24],theasymmetryofthe interatomicpotentialsresultsinthethermalexpansioneffectwhenlargervibrational amplitudes,atzeropressure,causethelargerequilibriuminteratomicdistanceand hence, a larger contribution from the soft tail. If thermal expansion is suppressed somehow,thenthehardcoremanifestsitself.Todemonstratethisletusconsiderthe Morse chain of unit mass particles whose dynamics is described by the following equationsofmotion u¨n=U′(h+un+1(cid:0)un)(cid:0)U′(h+un(cid:0)un(cid:0)1); (1) whereu (t)isthedisplacementofthenthparticlefromthelatticeposition,histhe n latticespacing, U(r)=D(e(cid:0)2a(r(cid:0)rm)(cid:0)2e(cid:0)a(r(cid:0)rm)); (2) istheMorsepotential,whereristhedistancebetweentwoatoms,D,a,r arethe m potentialparameters.ThefunctionU(r)hasaminimumatr=r ,thedepthofthe m potential(thebindingenergy)isequaltoDandadefinesthestiffnessofthebond. WetakeD=1,r =1anda=5.Fortheconsideredcaseofthenearest-neighbor m interactionstheequilibriuminteratomicdistanceish=r =1. m InframeofthemodelgiveninEqs.(1),(2)westudythedynamicsofthestag- geredmodeexcitedwiththeuseofthefollowinginitialconditions u (0)=Acos(pn)=((cid:0)1)nA; u˙ (0)=0; (3) n n 4 V.I.Dubinko,J.F.R.Archilla,S.V.DmitrievandV.Hizhnyakov inthechainofNparticles(Nisanevennumber)subjectedtotheperiodicboundary conditions, u (t)=u (t). Our aim is to find the frequency of the mode as the n n+N functionofthemodeamplitudeAforthetwocases.Firstlythechainisallowedto expand,andforgivenA>0theinteratomicdistanceh>1issuchthatthepressure p=0.Inthesecondcasethethermalexpansionissuppressedbyfixingh=1forany A.Inthiscase,ofcourse,forA>0onehas p>0.Theresultsforthetwocasesare showninFig.1(a)and(b),respectively.In(a)thefrequencyofthemodedecreases withA,whilein(b)theoppositetakesplace. In the numerical experiments by Haas et al. [15] is was found that the DBs in puremetalsareextendedalongaclose-packedatomicrow.Theatomssurrounding the atomic row where DB is excited create the effective periodic on-site potential thatsuppressesthethermalexpansionoftherowandthatiswhytheDBfrequency increaseswithincreasingamplitude.Theon-sitepotentialwasnotintroducedinthe 1DmodelbyKiselevetal.[24]and,naturally,thermalexpansiondidnotallowfor theexistenceofDBswithfrequenciesabovethephononband. Notably,theexcitationenergyofDBsinmetalscanberelativelysmall(fractions of eV) as compared to the formation energy of a stable Frenkel pair (several eV). Moreover,ithasbeenshownthatDBsinpuremetalsarehighlymobileandhence theycanefficientlytransferenergyandmomentumoverlargedistancesalongclose- packed crystallographic directions [18,32,36]. Recently, a theoretical background hasbeenproposedtoascribetheinteractionofmovingDBs(a.k.a’quodons’-quasi- Fig.1 Solidlinesshowfrequencyofthestaggeredmode(leftordinate)asthefunctionofamplitude forthecaseof(a) p=0and(b)h=1.Dashedlinesshow(a)hand(b) p(rightordinate)asthe functionsofA.Theresultsforthe1DMorselattice(1),(2)withtheinitialconditions(3). Ratetheoryofaccelerationofdefectannealingdrivenbydiscretebreathers 5 particles propagating along close-packed crystallographic directions) with defects inmetalstoexplaintheanomalouslyacceleratedchemicalreactionsinmetalssub- jectedtoirradiation.RussellandEilbeck[34]havepresentedexperimentalevidence for the existence of quodons that propagate great distances in atomic-chain direc- tions in crystals of muscovite, an insulating solid with a layered crystal structure. Specifically,whenacrystalofmuscovitewasbombardedwithalpha-particlesata givenpointat300K,atomswereejectedfromremotepointsonanotherfaceofthe crystal, lying in atomic chain directions at more than 107 unit cells distance from the site of bombardment. Irradiation may cause continuous generation of DBs in- sidematerialsduetoexternallatticeexcitation,thus’pumping’amaterialwithDB gas[10,12]. Inordertounderstandbetterthestructureandpropertiesofstandingandmoving DBs,considerthewaysoftheirexternalexcitationinFebyMDsimulations[36]. AstandingDBcanbeexcitedbyapplyingtheinitialdisplacementstothetwoadja- centatomsalongtheclose-packed[111]directionwiththeoppositesignstoinitiate their anti-phase oscillations, as shown in Fig. 2(a). The initial displacements (cid:6)d 0 determine the DB amplitude, frequency and, ultimately, its lifetime. DBs can be excitedinafrequencyband(1.0-1.4)(cid:2)1013 HzjustabovetheDebyefrequencyof bccFe,andDBfrequencygrowswithincreasingamplitudeasexpectedforthehard type anharmonicity due to the major contribution from the hard core of the inter- atomicpotential.Initialdisplacementslargerthanjd j=0:45A˚ generateachainof 0 focusons, while displacements smaller than jd j=0:27 A˚ do not provide enough 0 potential energy for the system to initiate a stable DB and the atomic oscillations decayquicklybylosingitsenergytophonons.ThemoststableDBscansurviveup to400oscillations,asshowninFig.2(b),andultimatelydecayinastepwisequan- tumnaturebygeneratingburstsofphonons,ashasbeenpredictedbyHizhnyakov asearlyasin1996[17]. A moving DB can be excited by introducing certain asymmetry into the initial conditions.Particularly,thetranslationalkineticenergyE canbegiventothetwo tr central atoms of DB in the same direction along [111] atomic row. DB velocity ranges from 0.1 to 0.5 of the velocity of sound, while travel distances range from several dozens to several hundreds of the atomic spaces, depending on d and E 0 tr [32,36]. Figure 3(a) shows a DB passing the two neighboring atoms with indices 3415and3416.InthemovingDBthetwocentralatomspulsatenotexactlyinanti- phasebutwithaphaseshift.Inabout1ps((cid:24)10oscillations)theoscillationsofthese twoatomsceasebuttheyareresumedatthesubsequentatomsalong[111]atomic row.Inthisway,theDBmovesataspeedof2.14km/s,i.e.aboutthehalfspeedof soundinbccFe.ThetranslationalkineticenergyoftheDBisabout0.54eV,which is shared mainly among two core atoms, giving 0.27 eV per atom, which is close to the initial kinetic energy of E =0:3 eV given to the atoms to initiate the DB tr translational motion. The deviation of the potential energy of the atoms from the ground state during the passage of the DB is presented in Fig. 3(b). The maximal deviation of energy is of the order of 1 eV. Thus, a moving DB can be viewed as anatom-sizelocalisedexcitationwithlocaltemperatureabove1000Kpropagating alongthecrystalatasubsonicspeed. 6 V.I.Dubinko,J.F.R.Archilla,S.V.DmitrievandV.Hizhnyakov Fig.2 Oscillationofxcoordinateoftwoneighbouringatoms,2480and2479,ina[111]rowin FeinastandingDBexcitedwithd =0:325A˚ [36].(a)InitialstageofDBevolution;(b)total 0 lifespanofDBshowingastepwisequantumnatureofitsdecay 2.2 Semiconductors Similartometals,semiconductorspossessnogapinphononspectrumandthusDBs mayexistonlyiftheirfrequencyispositionedabovethephononspectrum[15,37]. Such high-frequency DBs may be realized in semiconductors due to the screen- ing of the short-range covalent interaction by the conducting electrons. Voulgar- akis et al. [37] investigated numerically existence and dynamical properties of DBs in crystalline silicon through the use of the Tersoff interatomic potential. They found a band of DBs with lifetime of at least 60 ps in the spectral region Ratetheoryofaccelerationofdefectannealingdrivenbydiscretebreathers 7 Fig.3 (a)Oscillationofxcoordinateoftwoneighbouringatoms,3415and3416ina[111]rowin FeduringthepassageofamovingDB(d0=0:4A˚,Etr=0:3eV);(b)deviationofthepotential energyoftheatomsfromthegroundstateduringthepassageofDB (1:643(cid:0)1:733)(cid:2)1013 Hz, located just above the upper edge of the phonon band calculated at 1:607(cid:2)1013 Hz. The localized modes extend to more than second neighbors and involve pair central-atom compressions in the range from 6.1% to 8.6%ofthecovalentbondlengthperatom.Finitetemperaturesimulationsshowed thattheyremainrobusttoroomtemperaturesorhigherwithatypicallifetimeequal to 6 ps. Figure 4 shows DB generated in silicon modeled by the Tersoff poten- tial[37].ItcanbeseenthattheDBisverypersistentandlocalized:itsvibrational energyismainlyconcentratedinthebondbetweentwoneighboringatomsoscillat- inginanti-phasemode. Similar to silicon, germanium has a diamond crystal structure and readily pro- ducesDBs[19],asdemonstratedinFig.5.AsinSi,theDB’senergyinGeiscon- centrated in the central bond between two atoms oscillating in anti-phase mode. 8 V.I.Dubinko,J.F.R.Archilla,S.V.DmitrievandV.Hizhnyakov Fig.4 (a)DBgenerationinsiliconmodeledbyTersoffpotentials.TheDBfrequencyis1:733(cid:2) 1013 Hz,whilevectors(magnifiedforvisualizationpurposes)denoteatomicdisplacementsfrom equilibrium;onlyfirst(gray,redonline)andsecond(white)neighborstothecentral(black,blue online)twobreatheratomsareincluded.Thedisplacementofthetwocentralbreatheratomsis 0.18 A˚. (b) Time evolutionof the silicon DB after 998 breather periods. The absolute value of the displacements from equilibrium along the direction of motion of each atom is plotted. The coordinatedoscillationsofcentral(solid),first(dotted),andsecond(dashed)neighboratomsare indicated.ReproducedwithpermissionfromVoulgarakis,N.,Hadjisavvas,G.,Kelires,P.,Tsironis, G.:ComputationalinvestigationofintrinsiclocalizationincrystallineSi.Phys.Rev.B69,113,201 (2004).Copyright(2004)AmericanPhysicalSociety This means that potential barriers for chemical reactions in the vicinity of an DB maybesubjectedtopersistentperiodicoscillations,whichhasbeenshowntoresult inastrongamplificationofthereactionrates[13].Inthenextsectionweconsider thewaysofDBexcitationinthermalequilibriumandunderexternaldriving. Ratetheoryofaccelerationofdefectannealingdrivenbydiscretebreathers 9 Fig.5 DBgeneratedingermaniummodeledbytheTersoffpotential.Displacementofoneofthe twocentralatomsisshownwithasolidlineandofthefirstneighborbydashed(along[111]axis) anddotted(perpendicularto[111]axis)lines.SeeRef.[19] (cid:1) (cid:1)(cid:2)(cid:3)(cid:4) (cid:2) (cid:3) (cid:10) (cid:5) (cid:9)(cid:3)(cid:8) (cid:3)(cid:8) (cid:6)(cid:7) Fig.6 (a)Sketchofthedouble-wellpotentiallandscapewithminimalocatedat(cid:6)xm.Theseare stablestatesbeforeandafterreaction,separatedbyapotential”barrier”withtheheightchang- ingperiodicallyorstochasticallywithintheV band.(b)Amplificationfactor,I0(V=kBT),forthe averageescaperateofathermalizedBrownianparticlefromaperiodicallymodulatedpotential barrieratdifferenttemperaturesandmodulationamplitudesV.Reproducedwithpermissionfrom V.I.Dubinko,P.A.SelyshchevandJ.F.R.Archilla:Reaction-ratetheorywithaccountofthecrystal anharmonicity Phys.Rev.E83041124(2011).Copyright(2011)AmericanPhysicalSociety. 3 DBexcitationunderthermalequilibriumandexternaldriving Inthissection,fortheconvenienceofthereader,werepeatthemainpointsofthe chemical reaction rate theory that takes into account the effect of DBs, following theearlierworks[3,11,13]. TherateequationfortheconcentrationofDBswithenergyE,C (E;t)canbe DB writtenasfollows[13] 10 V.I.Dubinko,J.F.R.Archilla,S.V.DmitrievandV.Hizhnyakov ¶C (E;t) C (E;t) DB =K (E)(cid:0) DB ; (4) ¶t DB t (E) DB where K (E) is the rate of creation of DBs with energy E >E and t (E) is DB min DB theDBlifetime.Ithasanobvioussteady-statesolution(¶C (E;t)=¶t=0): DB C (E)=K (E)t (E): (5) DB DB DB Inthefollowingsectionswewillconsiderthebreatherformationbythermalactiva- tionandthenextendthemodeltonon-equilibriumsystemswithexternaldriving. 3.1 Thermalactivation The exponential dependence of the concentration of high-energy light atoms on temperature in the MD simulations [22] gives evidence in favor of their thermal activationatarategivenbyatypicalArrheniuslaw[33] ( ) E K (E;T)=w exp (cid:0) ; (6) DB DB k T B wherew istheattemptfrequencythatshouldbeclosetotheDBfrequency.The DB breatherlifetimehasbeenproposedin[33]tobedeterminedbyaphenomenological law based on fairly general principles: (i) DBs in two and three dimensions have a minimum energy E , (ii) The lifetime of a breather grows with its energy as min t =t0 (E=E (cid:0)1)z, with z and t0 being constants, whence it follows that DB DB min DB underthermalequilibrium,theDBenergydistributionfunctionC (E;T)andthe DB meannumberofbreatherspersiten (T)aregivenby DB ( ) E C (E;T)=w t exp (cid:0) ; (7) DB DB DB k T B E∫max exp((cid:0)E =k T) y∫max n (T)= C (E;T)dE=w t0 min B yzexp((cid:0)y)dy; (8) DB DB DB DB (E =k T)z+1 min B Emin 0 ∫ with y =(E (cid:0)E )=k T. Noting that G(z+1;x)= xyzexp((cid:0)y)dy is the max max min B 0 secondincompletegammafunction,Eq.(8)canbewrittenas[13]: ( ) exp((cid:0)E =k T) E (cid:0)E n (T)=w t0 min B G z+1; max min : (9) DB DB DB (E =k T)z+1 k T min B B ItcanbeseenthatthemeanDBenergyishigherthantheaveragedenergydensity (ortemperature):
Description: