ebook img

Random-field Ising model: Insight from zero-temperature simulations PDF

0.59 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Random-field Ising model: Insight from zero-temperature simulations

CondensedMatterPhysics,2014,Vol.17,No4,43003:1–14 DOI:10.5488/CMP.17.43003 http://www.icmp.lviv.ua/journal Random-field Ising model: Insight from zero-temperature simulations P.E.Theodorakis1,N.G.Fytas2 5 1 1DepartmentofChemicalEngineering,ImperialCollegeLondon,SW72AZ,London,UnitedKingdom 0 2AppliedMathematicsResearchCentre,CoventryUniversity,Coventry,CV15FB,UnitedKingdom 2 n ReceivedOctober2,2014 a J 0 Wpeerfeonrlmigehdteantszoemroetecmritpicearlaatuspree.cWtseocfothnesitdherretew-doimdieffnesrieonnta,lin(dte=rm3)sroafntdhoemfi-efildelddiIsstirnibgumtioond,evlefrrosimonssimofumlaotidoenls, 1 namelyaGaussianrandom-fieldIsingmodelandanequal-weighttrimodalrandom-fieldIsingmodel.Byimple- mentingacomputationalapproachthatmapstheground-stateofthesystemtothemaximum-flowoptimization ] n problemofanetwork,weemploythemostup-to-dateversionofthepush-relabelalgorithmandsimulatelarge n ensemblesofdisorderrealizationsofbothmodelsforabroadrangeofrandom-fieldvaluesandsystemssizes - V L L L,whereLdenoteslinearlatticesizeandLmax 156.Usingasfinite-sizemeasuresthesample- s = × × = i to-samplefluctuationsofvariousquantitiesofphysicalandtechnicalorigin,andtheprimitiveoperationsofthe d push-relabelalgorithm,wepropose,forbothtypesofdistributions,estimatesofthecriticalfieldhc andthe . t criticalexponentνofthecorrelationlength,thelatterclearlysuggestingthatbothmodelssharethesameuni- a versalityclass.AdditionalsimulationsoftheGaussianrandom-fieldIsingmodelatthebest-knownvalueofthe m criticalfieldprovidethemagneticexponentratioβ/νwithhighaccuracyandclearoutthecontroversialissue - ofthecriticalexponentαofthespecificheat.Finally,wediscusstheinfinite-limitsizeextrapolationofenergy- d andorder-parameter-basednoisetosignalratiosrelatedtotheself-averagingpropertiesofthemodel,aswell n o asthecriticalslowingdownaspectsofthealgorithm. c Keywords:random-fieldIsingmodel,finite-sizescaling,graphtheory [ PACS:05.50.+q,75.10.Hk,64.60.Cn,75.10.Nr 1 v 8 1. Introduction 3 3 2 Therandom-fieldIsingmodel(RFIM)isoneofthearchetypaldisorderedsystems[1–3],extensively 0 studied due toits theoretical interest, as well asits close connection to experiments inhard [4, 5] and . 1 softcondensedmattersystems[6].ItsbeautyisthatthemixtureofrandomfieldsandthestandardIsing 0 modelcreatesrichphysicsandleavesmanystillunansweredproblems.TheHamiltoniandescribingthe 5 modelis :1 H =−J σiσj− hiσi, (1) v i,j i 〈X〉 X Xi whereσi 1areIsingspins,J 0isthenearest-neighbor’sferromagneticinteraction,andhi areinde- =± > pendentquenchedrandomfields. r a TheexistenceofanorderedferromagneticphasefortheRFIM,atlowtemperatureandweakdisorder, followedfromtheseminaldiscussionofImryandMa[1],whenthespacedimensionisgreaterthantwo (d 2) [7–11]. This has provided us with a general qualitative agreement on the sketch of the phase > boundary, separating the ordered ferromagnetic phase from the high-temperature paramagnetic one. The phase-diagram line separates the two phases of the model and intersects the randomness axis at thecriticalvalueofthedisorderstrengthhc,asshowninfigure1.Suchqualitativesketchinghasbeen commonlyusedfortheRFIM[12–14]andclosedformquantitativeexpressionsarealsoknownfromthe earlymean-fieldcalculations[15–17].However,itisgenerallytruethatthequantitativeaspectsofphase diagramsproducedbymean-fieldtreatmentsprovideratherpoorapproximations. ©P.E.Theodorakis,N.G.Fytas,2014 43003-1 P.E.Theodorakis,N.G.Fytas h / J hc R P F 0 T / J Figure1.Schematicphasediagramandrenormalization-groupflowoftheRFIM.Thesolidlineseparates theferromagnetic(F)andparamagnetic(P)phases.Theblackarrowshowstheflowtotherandomfixed point(R)atT 0andh hc,asmarkedbyanasterisk. = = Thecriteriafordeterminingtheorderofthelow-temperaturephasetransitionanditsdependence on the form of the field distribution have been discussed throughout the years [15–19]. Although the view that the phase transition of the RFIM is nowadays considered to be of second order [20–25], the extremelysmallvalueoftheexponentβcontinuestocastsomedoubts.Moreover,aratherstrongdebate withregardtotheroleofdisorder,i.e.,thedependence,ornot,ofthecriticalexponentsontheparticular choiceofthedistributionfortherandomfieldsandthevalueofthedisorderstrength,analogouslytothe mean-fieldtheorypredictions[15–17],wasonlyrecentlyputonadifferentbasis[26].Currently,eventhe well-knowncorrespondenceamongtheRFIManditsexperimentalanalogue,thedilutedantifferomagnet inafield (DAFF),hasbeenseverelyquestioned byextensivesimulations performedonbothmodels at positive-andzero-temperature[27].Inanycase,thewholeissueofthemodel’scriticalbehaviorisstill underintenseinvestigation[20–25,28–43]. AlreadyfromtheworkofHoughtonetal.[44],theimportanceoftheformofthedistributionfunction inthedeterminationofthecriticalpropertiesoftheRFIMhasbeenemphasized.Infact,differentresults havebeenproposedfordifferentfielddistributions,liketheexistenceofatricriticalpointatthestrong disorder regime of the system, present only in the bimodal case [15–17, 44]. Following the results of Houghtonetal.[44],Mattis[45]reexaminedtheRFIMintroducinganewtypeofatrimodaldistribution 1 p P(trimodal)(hi) pδ(hi) − [δ(hi h) δ(hi h)], (2) = + 2 − + + µ ¶ whereh defines thedisorder (field) strength and p (0,1). Clearly, for p 1 one switches tothe pure ∈ = Isingmodel,whereasforp 0thewell-knownbimodaldistributionisrecovered.Ingeneralterms,the = trimodaldistribution(2)permitsaphysicalinterpretationasadilutedbimodaldistribution,inwhicha fraction p of the spins are not exposed to the external field. Thus, it mimics the salient feature of the Gaussiandistribution 1 h2 P(Gaussian)(hi)= p2πh2expÃ−2hi2!, (3) forwhichasignificantfractionofthespinsareinweakexternalfields.Mattissuggestedthatforapar- ticularcase,p 1/3,equation(2)maybeconsideredtoagoodapproximationastheGaussiandistribu- = tion[45]. Thisin turnindicated that the two models should be inthe same universality class. Further studiesalongtheselines,usingmean-fieldandrenormalization-groupapproaches,providedcontradict- ingevidenceforthecriticalaspectsofthep 1/3modelandalsoproposedseveralapproximationsofits = phasediagramforarangeofvaluesofp[46–48].However,noneofthesepredictionshasbeenconfirmed bynumericalsimulationsuptillnow,thusremainingambiguous,duetotheapproximatenatureofthe mean-field-typeofthemethodsused. Thescopeofthepresentworkistoshedsomelighttowardsthisdirectionbyexaminingseveralcriti- calfeaturesofthephasediagramoftheRFIMatd 3,usingbothdistributionsdescribedaboveinequa- = 43003-2 Random-fieldIsingmodel:Insightfromzero-temperaturesimulations tions(2)and(3).Inparticular,inthefirstpartofourstudyweprovidenumericalevidencethatclarify thematchingbetweenthetrimodal(p 1/3)andGaussianmodelsandwegiveestimatesforthecritical = fieldhc andcriticalexponentνthatcompareverywelltothemostaccurateonesinthecorresponding literatureof theRFIM.Inthe second partof our studyweconcentrate onthemost studied caseofthe GaussianRFIM,forwhichwepresentascalinganalysisofcriticaldatafortheorderparameterandthe specificheat,i.e.,dataobtainedatthebestknownestimateofthecriticalfieldhc.Ouranalysispointsto averysmall,butnon-zero,valueforthemagneticexponentratioβ/ν,andacriticalexponentα 0−,in → goodagreementwithexperimentalpredictions[49,50].Wealsodiscusstheinfinite-limitsizeextrapola- tionofenergy-andorder-parameter-basednoisetosignalratiosrelatedtotheself-averagingproperties ofthemodel,aswellassometechnicalaspectsoftheimplementednumericalmethod. Ourattemptbenefitsfrom:(i)theexistenceofrobustcomputationalmethodsofgraphtheoryatzero temperature(T 0)thatallowustosimulateverylargesystemsizesanddisorderensembles,necessary = for an accurate investigation of the delicate propertiesdiscussed above, (ii)classical finite-size scaling (FSS)techniques,and(iii)anewscalingapproachthatinvolvestheanalysisofthesample-to-samplefluc- tuationsofvariouswell-definedquantities.Inparticular,sample-to-samplefluctuationsandtherelative issue of self-averaging have attracted much interest in the study of disordered systems [51]. Although ithasbeenknownformanyyearsnowthatfor(spinandregular)glassesthereisnoself-averagingin the ordered phase [52], for random ferromagnets such a behavior was first observed for the RFIM by Dayanetal.[53]andsomeyearslaterfortherandomversionsoftheIsingandAshkin-Tellermodelsby WisemanandDomany[54].Theselatterauthorssuggested aFSSansatzdescribingtheabsenceofself- averaging and the universal fluctuations of randomsystems near criticalpoints that was refined on a morerigorousbasisbyAharonyandHarris[55].Eversince,thesubjectofbreakdownofself-averagingis animportantaspectofseveraltheoreticalandnumericalinvestigationsofdisorderedspinsystems[56– 68].Infact,EfratandSchwartz[69]showedthatthepropertyoflackofself-averagingmaybeturnedinto ausefultoolthatcanprovideanindependentmeasuretodistinguishtheorderedanddisorderedphases ofthesystem.Inviewofthisobservation,wediscusshereanotherusefulapplicationofthefluctuation propertiesofseveralquantitiesofthesystemtoobtaininformationontheground-statecriticalityofthe RFIM. Therestofthepaperisorganizedasfollows:Inthenextsectionwedescribethegeneralframework behind the mapping of the RFIM to the corresponding network, outline the numerical approach, and provideallthenecessarydetailsofourimplementation.TherelevantFSSanalysisthatshowstheequiva- lenceofbothdistributionsunderstudyintermsofthecriticalexponentνofthecorrelationlength,using anapproachbasedonthesample-to-samplefluctuationsofthemodel,ispresentedinsection3.Then,in section4wefocusourattentiononthemoststudiedcaseoftheGaussianmodelandweprovideestimates forthemagneticexponentratioβ/νandthecriticalexponentαofthespecificheat,viathescalingofthe order parameter and bond energy, respectively, at the best known estimate of the critical field value. Wealsoinvestigatetheself-averagingpropertiesofthemodelatcriticality,usingproperlydefinednoise tosignalratiosandweprovideanestimatefortheexponentz thatdescribesthecriticalslowingofthe algorithmused.Finally,wesynopsizeourfindingsinsection5. 2. Simulation protocol Asalreadydiscussedextensivelyintheliterature(seereference[70]andreferencestherein),theRFIM capturesessentialfeaturesofmodelsinstatisticalphysicsthatarecontrolledbydisorderandhavefrus- tration.Suchsystemsshowcomplexenergylandscapesduetothepresenceoflargebarriersthatseparate severalmeta-stablestates.Whensuchmodelsarestudiedusingsimulationsmimickingthelocaldynam- icsofphysicalprocesses,ittakesanextremelylongtimetoencountertheexactgroundstate.However, therearecaseswhereefficientmethodsforfindingthegroundstatecanbeutilizedand,fortunately,the RFIMisonesuchcase.Thesemethodsescapefromthetypicaldirectphysicalrepresentationofthesys- tem,inawaythatextradegreesoffreedomareintroducedandanexpandedproblemisfinallysolved. Byexpanding the configuration spaceand choosing properdynamics, thealgorithm practicallyavoids theneedofovercominglargebarriersthatexistintheoriginalphysicalconfigurationspace.Anattractor state in the expended space is found in time polynomial in the size of the system and when the algo- 43003-3 P.E.Theodorakis,N.G.Fytas rithmterminates,therelevantauxiliaryfieldscanbeprojectedontoaphysicalconfiguration, whichis theguaranteedgroundstate. Therandomfieldisarelevantperturbationatthepurefixed-point,andtherandom-fieldfixed-pointis atT 0[7–10].Hence,thecriticalbehavioristhesameeverywherealongthephaseboundaryoffigure1, = and we canpredictitsimply bystaying at T 0and crossing the phaseboundary ath hc. Thisis a = = convenientapproach,becausewecandeterminethegroundstatesofthesystemexactlyusingefficient optimizationalgorithms[20,21,25,65,66,71–76]throughanexistingmappingofthegroundstatetothe maximum-flowoptimizationproblem[77].Aclearadvantageofthisapproachistheabilitytosimulate largesystemsizesanddisorderensemblesinrathermoderatecomputationaltimes.Weshouldunderline herethat,eventhemostefficientT 0MonteCarloschemesexhibitextremelyslowdynamicsinthelow- > temperaturephaseofthesesystemsandareupperboundedbylinearsizesoftheorderofLmax 32[70]. É FurtheradvantagesoftheT 0approacharetheabsenceofstatisticalerrorsandequilibrationproblems, = which,onthecontrary,arethetwomajordrawbacksencounteredintheT 0simulationofsystemswith > roughfree-energylandscapes[5]. A short directsketching of how this mapping may in principleoccur through some simple consid- erationsisasfollows:LetG (V,E)beadirected,weightedgraphconsistingofasetV ofnodesanda = setE ofedges,eachofthelatterconnectingtwonodes.Inadirectedgraph,foreachedgeadirectionis specified.Thepropertyofbeingweightedmeansthattoeachedgefromnodei tonode j acapacitycij is assigned.Letthenumberofnodesben 2.WeenumeratethenodesV {0,1,2,...,n,n 1}anddefine + = + thefirstnode0assources andthelastnoden 1asthesinkt.Theremainingnodeswillbeassociated + tothelatticesitesoftheRFIM.Wecalladirected,weightedgraphG withsources,sinkt,andcapacities c,asnetworkN (G,c,s,t).Now,inanetworkN (G,c,s,t),an(s,t)-cut(S,S)isdefinedasapartition ofthesetofnode=sV intotwodisjointsetsSandS(S= S ∅andS S V)withs Sandt S.Inother ∩ = ∪ = ∈ ∈ words,onecanimagineacutasapartitionthatdividesthenetworkintotwoparts,onepartbelongingto thesourceandtheothertothesink.Generally,therearemanydifferentpossiblecutsinanetwork.We canassigntoeachofthemacapacityC(S,S),definedasthesumofthecapacitiesoftheedgesthatthecut crosses C(S,S) cij. (4) = i S,j S ∈X∈ Notethatedgesaredirected,thatiswhyonlyedgesthatstartatthesourcesideofthecutandendatthe sinksidecontributetothecapacityofthecut. Now, thecentralideathatallowsustomaptheRFIMintoanetwork definedabove, consistsofde- scribingacutbyavector X withtheproperty: Xi 1ifi S and Xi 0otherwise, i.e.,ifi S.Then, = ∈ = ∈ bydefinition, X0 1 and Xn 1 0. Using thisrepresentation, the formula for the cutcapacity maybe = + = writteninthefollowingform n 1n 1 + + C(S,S) cijXi(1 Xj). (5) = − i 0 j 0 X= X= Anexpansionofequation(5)leadsto C(S,S) cijXiXj cij Xi, (6) =−i,j + i à j ! X X X andalreadyastructuralsimilaritytothefundamentalHamiltoniandefinitionoftheRFIM[equation(1)] isclearlyseen.Furtherinformationonthisstructuralsimilarities,includingadetailedalgebra,maybe foundfortheinterestedreaderintherelevantliterature(seeforinstancereference[70]andreferences therein). Theapplicationofmaximum-flowalgorithmstotheRFIMisnowadayswellestablished[75].Themost efficientnetworkflowalgorithmusedtosolvetheRFIMisthepush-relabel(PR)algorithmofTarjanand Goldberg[78].Fortheinterestedreader,generalproofsandtheoremsonthePRalgorithmcanbefoundin standardtextbooks[77].Theversionofthealgorithmimplementedinourstudyinvolvesamodification proposedbyMiddletonetal.[21,79,80]thatremovesthesourceandsinknodes,reducingmemoryusage andalsoclarifyingthephysicalconnection[79,80]. 43003-4 Random-fieldIsingmodel:Insightfromzero-temperaturesimulations Thealgorithmstartsbyassigning anexcess xi toeach latticesitei,with xi hi.Residualcapacity = variablesrij betweenneighboringsitesareinitiallysettoJ.Aheightvariableui isthenassignedtoeach nodeviaaglobalupdatestep.Inthisglobalupdate,thevalueofui ateachsiteinthesetT j xj 0 = | < of negative excess sites is set to zero. Sites with xi Ê0 have ui set to the length of the shor©test pathª, viaedgeswithpositivecapacity,fromi toT.Thegroundstateisfoundbysuccessivelyrearrangingthe excessesxi,viapushoperations,andupdatingtheheights,viarelabeloperations.Theorderinwhichsites areconsideredisgivenbyaqueue.Inthispaper,weconsiderafirst-in-first-out(FIFO)queue.TheFIFO structureexecutesaPRstepforthesitei atthefrontofalist.Ifanyneighboringsiteismadeactiveby thePRstep,itisaddedtotheendofthelist.Ifi isstillactiveafterthePRstep,itisalsoaddedtotheend ofthelist.Thisstructuremaintainsthecyclesthroughthesetofactivesites. When no more pushes or relabels are possible, a final global update determines the ground state, so that sites which are path connected by bonds with rij 0 to T have σi 1, while those which > =− aredisconnected from T have σi 1. A push operationmoves excess from a site i to a lower height = neighbor j,ifpossible,thatis,wheneverxi 0,rij 0,anduj ui 1.Inapush,theworkingvariables > > = − aremodifiedaccordingtoxi xi δ,xj xj δ,rij rij δ,andrji rji δ,withδ min(xi,rij). → − → + → − → + = PushoperationstendtomovethepositiveexcesstowardssitesinT.Whenxi 0andnopushispossible, > tishoelasitteedi,swrietlhabueilledu,jwi1t,hfouriainllcireaUsedantod1al+lmj inU{j,|rtihj>e0h}ueijg.hItnuaidfdoirtiaolnli,ifaUseistoinfchriegahseesdttsoitietssUmabxeicmoumme > + ∈ ∉ ∈ value,V,asthesesiteswillalwaysbeisolatedfromthenegativeexcessnodes. Periodicglobal updatesareoften crucialto thepracticalspeed of thealgorithm [79, 80]. Following thesuggestions ofreferences[21,79,80],wehavealsoappliedglobalupdateshereeveryV relabels,a practicefoundtobecomputationallyoptimum[25,76,79,80]. Usingthisschemeweperformedlarge-scalesimulationsoftheRFIMwithbothtypeofdistributions discussedaboveinsection1.Letusnoteherethatpriortothecommencementoftheselarge-scalesimu- lations,asetofpreliminaryrunswithsmallersystemsizesrevealedthecriticalh-regimethatweshould workon.Inparticular,forthetrimodal(p 1/3)RFIMsimulationshavebeenperformedforlatticesizes = L {24,32,48,64,96,128}anddisorderstrengthsh [2.7 3.3].FortheGaussianmodellatticesizesinthe ∈ ∈ − rangeL {Lmin Lmax},whereLmin 24andLmax 156,wereusedanddisorderstrengthsh [2.0 3.0]. ∈ − = = ∈ − Inbothcasesadisorder-strengthstepofδh 0.02wasused.Regardingthedisorderaveragingprocedure, = whichisofparamountimportanceinthestudyoftheRFIM,foreachpair(L,h)anextensiveaveraging overNs 50 103independentrandom-fieldrealizationshasbeenundertaken,muchlargerthaninpre- = × viousrelevantstudiesofthemodel[21,65,66,72,73].Additionally,fortheGaussianRFIMweperformed some further and even more extensive simulations, at the bestknownestimate ofthe criticalfield hc, usinginthiscaseanensembleofNs 200 103 randomrealizations. = × 3. Universality aspects As the outcome of the PR algorithm is the spinconfiguration of the ground state, we can calculate foragivensampleofalatticewithlinearsizeL themagnetizationviam=V−1 iσi.Takingtheaver- ageoverdifferentdisorderconfigurationswemaydefinetheorderparameterofthesystemM [m ], P = | | where[ ]denotesdisorderaveraging.Another physicalparameterofinterestisthebondenergyper ··· sapvienrathgea,tdceofirrneesdpohnedrseatoftethreasfirEsJtter[emJ].oOftuhreaHnaamlyislitsoniniatnhe(1s)e,qi.ue.eelJw=il−l bVe−1ma〈iin,jl〉yσbiaσsje,danonditthsedseisothrdreeer = P thermodynamicquantities,aswellasarelevantalgorithmicquantity,namelythenumberofprimitive operationsofthePRalgorithm,thatisthenumberofrelabelsperspinR. Atthispoint,letusstartthepresentationofourFSSapproachwithfigures2(a)and(b),whereweplot thesample-to-samplefluctuationsoverdisorderoftwoquantities,ofphysicalandtechnicalorigin,forthe caseofthetrimodalRFIM.Inparticular,weplotthefluctuationsofthebondenergyEJ[figure2(a)]and thenumberofprimitiveoperationsofthePRalgorithm[figure2(b)].Allthesefluctuationsareplottedas afunctionofthedisorderstrengthh forthecompletelatticesize-rangeL 32 128. Itisclearthatfor = − everylatticesizeL,thesefluctuationsappeartohaveamaximumvalueatacertainvalueofh,denoted hereafterashL∗,thatmaybeconsideredinthefollowingasasuitablepseudo-criticaldisorderstrength. Byfittingthedatapointsaroundthemaximum firsttoaGaussian,andsubsequentlytoafourth-order 43003-5 P.E.Theodorakis,N.G.Fytas Figure2.(Coloronline)(a)Sample-to-samplefluctuationsofthebondenergyVEJ ofthetrimodalRFIM asafunctionofthedisorderstrengthforvariouslatticesizesintherangeL 32 128.Linesaresimple = − guides tothe eye. (b) Sameas in panel (a) but now thesample-to-sample fluctuations of the number ofprimitive operations ofthePRalgorithm,VR,areshown.(c)Simultaneousfittingoftheform(7)of thepseudo-criticaldisorderstrengthshL∗,obtainedfromthepeakpositionsofthefluctuationsshownin panels(a)and(b).Thesharedparametersofthethreedatasetsofthefitarethecriticalstrengthhcand thecorrelationlength’sexponentν. polynomial,wehaveextractedthevaluesofthepeak-locations(hL∗)bytakingthemeanvalueviathetwo fittingfunctions,aswellasthecorrespondingerrorbars.UsingnowthesevaluesforhL∗ weconsiderin thepanel(c)offigure2asimultaneouspower-lawfittingattemptoftheform hL∗=hc+bL−1/ν, (7) simultaneous meaning that the values ofhc and νfor all datasets inthe fitting procedureare shared during the fit. The quality of the fit is fair enough, with a value of χ2/dof of the order of 0.6, where dofreferstothe degrees offreedom, and producesthe estimates hc 2.745(7) and ν 1.37(2) for the = = criticaldisorderstrength andthecorrelationlength’s exponent, inagreement withrecentestimates in theliterature[76]. WenowturnourdiscussionontheGaussianRFIM.Forthiscaseweshowinfigure3(a)thenumberof relabelsperspinRasafunctionofthedisorderstrengthforvariouslatticesizesintherangeL 24 156. = − Again,weobservethatforeverylatticesizeL,Rhasamaximumatacertainvalueofh,denotedasbefore withhL∗,thatmaybeconsiderednowasarelevantpseudo-criticaldisorderstrength.Followingasimilar procedure,we extracted the values of the peak-locations(hL∗)as well asthe correspondingerrorbars, whoseshift-behaviorisnowplottedinpanel(b)offigure3.Thestraightlineispower-lawfittingattempt ofthesameform(7)andtheoutcomeforhc andνis2.274(4)and1.37(1),respectively.Thequalityofthe fitisalsointhiscasegood,withavalueofχ2/dofoftheorderof0.4. Afewcomments onthescalinganalysisarenowinorder:Havingsimulated morethanfivelattice size-pointsineachcase,wealsotriedtoperformtheaboveanalysisincludinghigher-orderscalingcor- rections of the form (1 b′L−ω), where ω is the well-known correction-to-scaling exponent, obtained + veryrecentlytobeω 0.52(11) for thismodel[26],usingthescalingbehavior ofuniversalquantities. = However,noimprovementhasbeenobservedinthequalityofthefitofourdata.Onthecontrary,the 43003-6 Random-fieldIsingmodel:Insightfromzero-temperaturesimulations Figure3.(Coloronline)(a)ThenumberofrelabelsperspinRoftheGaussianRFIMasafunctionofthe disorderstrengthforvariouslatticesizesintherangeL 24 156.Linesaresimpleguidestotheeye.(b) = − Fittingoftheform(7)ofthepseudo-criticaldisorderstrengthshL∗,obtainedfromthepeakpositionsof panel(a). correctedscalingassumptionresultedinanunstablefittingprocedurewithsignificantlylargeerrorsin thevaluesoftheexponentν,thecoefficientb′,aswellastheexponentω. Our suggestion of choosing these newly defined pseudo-critical disorder strengths hL∗ as a proper measureforperformingFSS,closelyfollowstheanalogousconsiderationsofHartmannandYoung[72] and Dukovski and Machta [73], also for the Gaussian RFIM. The first authors [72] considered pseudo- criticaldisorderstrengthsatthevaluesofhatwhichaspecific-heat-likequantityobtainedbynumerically differentiatingthebondenergywithrespecttoh attainsitsmaximum.Ontheotherhand,theauthors of reference [73] identified the pseudo-critical points as those in the H h plane (with H a uniform − externalfield), where threedegenerateground states ofthe system show thelargest discontinuitiesin themagnetization. Respectively,MiddletonandFisher[21]usingsimilarreasoningontheGaussianRFIM,characterized thedistributionoftheorderparameterbytheaverageoversamplesofthesquareofthemagnetization perspinandtheroot-mean-squaresample-to-samplevariationsofthesquareofthemagnetization.They identifiedasimilarbehaviortothatoffigures2(a)and(b),i.e.,withincreasingL,thepeakmagnitudeof thisquantitymoveditslocationtosmallervaluesofh,defininganotherrelevantpseudo-criticaldisorder strength.However,inreference[21]theauthorswereonlyinterestedinthescalingbehavioroftheheight ofthesepeaks.Thepracticefollowed inthecurrentpaper,employingtheFSSbehaviorofthepeaksof thesample-to-sample fluctuationsofseveralquantitiesofphysical(M andEJ)andtechnical(R)origin, wasinspiredbytheintriguinganalysisofEfratandSchwartz[69].Theseauthors,studyingalsothed 3 = RFIM, showed that the behavior of the sample-to-sample fluctuations in a disordered system may be turnedintoausefultoolthatcanprovideanindependentmeasuretodistinguishbetweentheordered anddisorderedphasesofthesystem.Theanalysisoffigures2(a)and(b)aboveverifiestheirprediction, andtheaccuracyintheestimationofrelevantphasediagramfeatures,likethecriticalfieldhc andthe criticalexponentν,turnsouttobeacleartestinfavoroftheoverallscheme. Letusmakeatthispointasmallcommentconcerningtheerrorsinherentinthesetypesofapprox- imations.Theerrorsinducedintheschemebasedonthesample-to-samplefluctuationsoffigures2(a), 2(b),ortheprimitiveoperationsofthePRalgorithmshowninfigure3(a),havetheiroriginintheapplica- tionofsomepolynomial,orpeak-like,functioninordertoextracttherelevantpositionofthemaximum intheh-axis.Onthecontrary,insimilardefinitionsofpseudo-criticalpoints,suchasthroughtheuseof someproperlydefinedspecific-heat-likequantityatT 0[72],oneshouldnumericallydifferentiatethe = dataofthebondenergyEJ,andthenconsiderasmoothingfunctiontolocatethepositionofthemaxi- mum.Thisschemeissubjectedtotwosuccessivefittingapproximations,thusincreasingtheerrorsinthe estimationofthepseudo-criticalpoints. To summarize, in this section, we have investigated the matching between the trimodal, p 1/3, = RFIMandtheGaussianRFIM.Clearlyenough, ourestimatesforthecriticalexponentνofbothmodels 43003-7 P.E.Theodorakis,N.G.Fytas indicateanequivalenceamongbothdistributionswithinerrorbars,justifyingtheoriginalpredictionof Mattis[45].Furthermore,wehavesuggestedthevaluesforthecriticalfieldhcwhichcompareverywell tothemostaccurateestimationsoftheliterature.Forinstance,thebestknownestimatefortheGaussian RFIMishc 2.27205 [26],veryclosetothevalue2.274(4) ofthepresentwork.Thisisalsotrueforthe = reportedvaluesofthecorrelation-length’sexponent, asfortheGaussianRFIM,previoushigh-accuracy estimates suggest a value of ν 1.37 [21, 26, 72]. An interesting aspect of our analysis that led to the = aboveresultswastheillustrationthatquantitiesrelatedtothesample-to-samplefluctuationsofseveral quantities of the system or simply the, originally technical, number of primitive operations of the PR algorithm,constituteausefulalternativetoinvestigatecriticality. 4. Gaussian RFIM Inthislastpartofourwork,weconcentrateontheGaussiandistribution,whichisthemoststudied caseintheliteratureoftheRFIM,andpresentfurtherresultsonimportantaspectsofitscriticalbehavior. Asalreadymentionedabove,wehaveperformedadditionalrunsatthebest-knownvalueofthecritical field,thatisthevaluehc 2.27205[26].Thus,thedataandanalysisofthissectionarebasedonextensive = simulationsperformedatthisvalueofthecriticalfield. Inprincipal,weareinterested intheextractionofanaccurateestimate forthemagneticexponent ratioβ/ν,whosesmallvaluecastssomedoubtsontheorderofthetransitionoftheRFIM.Theroutewe followhereisviathescalingoftheorderparameterM atthecriticalfield.Thisisshowninfigure4,and thesolidlineisapower-lawfittingoftheformM(h=hc) L−β/ν.Theresultingestimateofthemagnetic ∼ exponent ratio, given also in the figure, is β/ν 0.0131(3), a rather small, but non-zero value, also in = agreementwithsomeofthemostaccurateestimationsintheliterature[21]. ThenextpartofourFSSanalysisconcernsthecontroversialissueofthespecificheatoftheRFIM.The specificheatoftheRFIMcanbeexperimentally measured [49,50]andis,forsure, ofgreattheoretical importance. Yet, itis well known that itis one of the most intricatethermodynamic quantities to deal withinnumericalsimulations,evenwhenitcomestopuresystems.FortheRFIM,MonteCarlomethods atT 0havebeenusedtoestimatethevalueofitscriticalexponentα,butwererestrictedtorathersmall > systemssizesandhavealsorevealedmanyseriousproblems,i.e.,severeviolationsofselfaveraging[61, 64]. A better picture emerged throughout the years from T 0 computations, proposing estimates of = α 0.However, evenbyusingthesamenumericaltechniques,butdifferentscalingapproaches,some ≈ inconsistencieswererecordedintheliterature.Themost prominentwasthatofreference[72],where astronglynegativevalueofthecriticalexponentαwasestimated.Ontheotherhand,experimentson randomfieldanddilutedantiferromagneticsystemssuggestaclearlogarithmicdivergenceofthespecific heat[49,50]. Ingeneral,oneexpectsthatthefinite-temperaturedefinitionofthespecificheatC canbeextended to T 0, with the second derivative of E with respect to temperature being replaced by the second = 〈 〉 Figure4.FSSoftheorderparameteratthecriticalfieldhc. 43003-8 Random-fieldIsingmodel:Insightfromzero-temperaturesimulations Figure5.FSSbehaviorofthebondpartoftheenergydensityatthecriticalfieldhc.Thelineisafittingof theform(8). derivative of the ground-state energy densityEgs with respect to the randomfield h [21, 72].The first derivative∂Egs/∂J isthebondenergyEJ,alreadydefinedabove.ThegeneralFSSformassumedisthat the singular part of the specific heatCs behaves asCs Lα/νC˜ (h hc)L1/ν . Thus, one may estimate ∼ − α bystudying the behavior of EJ at h=hc [21].The computatio£n from the b¤ehavior of EJ isbased on integratingtheabovescalingequationuptohc,whichgivesadependence EJ(h=hc)=c1+c2L(α−1)/ν, (8) withci constants.Alternatively,followingtheprescriptionof[72],onemaycalculatethesecondderiva- tivebyfinitedifferencesofEJ(h)forvaluesofh nearhc anddetermineαbyfittingtothemaximumof thepeaksinCs,whichoccurathL∗−hc≈L−1/ν.However,asalreadynotedin[21],thislatterapproach maybemorestronglyaffected byfinite-size corrections,sincethepeaksinCs foundbynumericaldif- ferentiationaresomewhatabovehc,andfurthermoreitiscomputationallymoredemanding,sinceone musthavethevaluesofEJinawideandverydenserangeofh-values. Inthepresentcase,wherethecriticalvaluehcisknownwithgoodaccuracy,thefirstapproachseems to be more suitable to follow. The numerical data of the criticalbond energy and the relevant scaling analysisarepresentedinfigure5.Thesolidlineisapower-lawfittingoftheform(8)andtheestimatefor theexponentratio(α 1)/νis 0.799(28),asalsogiveninthefigure.Usingnowourestimateν 1.37(1), − − = wecalculatethecriticalexponentαofthespecificheat,resultinginanestimateα 0.095(37),whichis =− fairlycompatibletotheexperimentalscenarioofalogarithmicdivergence(α 0)[49,50]. = Followingthediscussionaboveinsection1,ournumericalstudiesofdisorderedsystemsarecarried outneartheircriticalpointsusingfinitesamples;eachsampleisaparticularrandomrealizationofthe quenched disorder. A measurement of a thermodynamic property, say Z, yields a different value for everysample.InanensembleofdisorderedsamplesoflinearsizeL,thevaluesofZ aredistributedac- cordingtoaprobabilitydistribution.Thebehaviorofthisdistributionisdirectlyrelatedtotheissueof self-averaging.Inparticular,bystudyingthebehaviorofthewidthofthisdistribution,onemayqualita- tivelyaddresstheissueofself-averaging,ashasalreadybeenstressedbypreviousauthors[54,55,58].In general,wecharacterizethedistributionbyitsaverage[Z]andalsobytherelativevariance V [Z2] [Z]2 Z RZ =[Z]2 = [Z−]2 , (9) thatweemployheretoinvestigatetheself-averagingpropertiesoftheRFIM. In particular, we study the behavior of the ratioRZ, in the framework of the two main quantities typicallyused,theorderparameterM andthebondenergyEJofthemodel.Infigure6weplottheratio RZ,estimatedatthecriticalfieldhc,forbothquantities,asafunctionoftheinverselinearsize.Thesolid linesaresimplelinearextrapolationstotheinfinite-limitsizeL .Asitisstraightforwardfromthe →∞ extrapolations, the order-parameter that carries the effect of the disorder — we remind here that the 43003-9 P.E.Theodorakis,N.G.Fytas Figure6.(Coloronline)Illustrationoftheself-averagingpropertiesofthemodelintermsofthemagneti- zationandbondenergy.Thelinesarelinearextrapolationstotheinfinite-limitsize. randomfieldcouplestothelocalspins—isastronglynon-self-averagingquantity.Ontheotherhand,as expected,thebondenergyrestoresself-averaginginthethermodynamiclimit. Closing, we present some computational aspects of the implemented PR algorithm and its perfor- manceonthestudyoftheGaussianRFIM.Althoughitsgenericimplementationhasapolynomialtime bound, its actual performance depends on the order in which operations are performed and which heuristics are used to maintain auxiliary fields for the algorithm. Even within this polynomial time bound, thereisapower-law criticalslowing down ofthe PR algorithm at thezero-temperature transi- tion [21, 71]. This critical slowing down is certainly reminiscent of the slowing down seen in local al- gorithms for statistical mechanics at finite temperature, such asMetropolis, and even for cluster algo- rithms[81].Infact,OgielskiwasthefirsttonotethatthePRalgorithmtakesmoretimetofindtheground statenear thetransitioninthreedimensions fromtheferromagnetic toparamagneticphase [71].This hasalreadybeenqualitativelyseeninfigure3(a),where,indeed,thenumberofprimitiveoperationsR ofthePRalgorithmismaximizedinthesuitablydefinedpseudo-criticalfieldshL∗.Assumingthestandard scalingoftheformR Lzw (h hc)−1/νL ,wherethedynamicexponentz describesthedivergencein ≈ − therunningtimeath=hc,a£ndw(x)∼x−z¤atlargexandw(x)∼|x|−zln|x|asx→−∞,tobeconsistent withconvergence toconstant R for h hc and R lnL for small h.Our fitting attempt of thisscaling > ∼ formisplottedinfigure7andtheobtainedestimateforthedynamiccriticalexponentzis0.487(7). Figure7.EstimationofthecriticalslowingdownexponentzofthePRalgorithmviatheFSSbehaviorof thenumberofrelabelsperspinatthecriticalfieldhc. 43003-10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.