Annals of Mathematics Studies Number 156 This page intentionally left blank Radon Transforms and the Rigidity of the Grassmannians JACQUES GASQUI AND HUBERT GOLDSCHMIDT PRINCETON UNIVERSITY PRESS Princeton and Oxford 2004 Copyright (cid:2)c 2004 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 3 Market Place, Woodstock, Oxfordshire OX20 1SY All Rights Reserved Library of Congress Control Number 2003114656 ISBN: 0-691-11898-1 0-691-11899-X (paper) British Library Cataloging-in-Publication Data is available The publisher would like to acknowledge the authors of this volume for providing the camera-ready copy from which this book was printed Printed on acid-free paper pup.princeton.edu Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 TABLE OF CONTENTS Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix CHAPTER I Symmetric spaces and Einstein manifolds 1. Riemannian manifolds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Einstein manifolds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3. Symmetric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4. Complex manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 CHAPTER II Radon transforms on symmetric spaces 1. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2. Homogeneous vector bundles and harmonic analysis. . . . . . . . . . 32 3. The Guillemin and zero-energy conditions. . . . . . . . . . . . . . . . . 36 4. Radon transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5. Radon transforms and harmonic analysis. . . . . . . . . . . . . . . . . . 50 6. Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7. Irreducible symmetric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8. Criteria for the rigidity of an irreducible symmetric space. . . . . . 68 CHAPTER III Symmetric spaces of rank one 1. Flat tori. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2. The projective spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3. The real projective space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4. The complex projective space. . . . . . . . . . . . . . . . . . . . . . . . . . 94 5. The rigidity of the complex projective space . . . . . . . . . . . . . . . 104 6. The other projective spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 CHAPTER IV The real Grassmannians 1. The real Grassmannians. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 2. The Guillemin condition on the real Grassmannians. . . . . . . . . . 126 vi TABLEOFCONTENTS CHAPTER V The complex quadric 1. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 2. The complex quadric viewed as a symmetric space. . . . . . . . . . . 134 3. The complex quadric viewed as a complex hypersurface . . . . . . . 138 4. Local K¨ahler geometry of the complex quadric. . . . . . . . . . . . . . 146 5. The complex quadric and the real Grassmannians . . . . . . . . . . . 152 6. Totally geodesic surfaces and the infinitesimal orbit of the curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7. Multiplicities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 8. Vanishing results for symmetric forms. . . . . . . . . . . . . . . . . . . . 185 9. The complex quadric of dimension two . . . . . . . . . . . . . . . . . . . 190 CHAPTER VI The rigidity of the complex quadric 1. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 2. Total geodesic flat tori of the complex quadric. . . . . . . . . . . . . . 194 3. Symmetric forms on the complex quadric . . . . . . . . . . . . . . . . . 199 4. Computing integrals of symmetric forms. . . . . . . . . . . . . . . . . . 204 5. Computing integrals of odd symmetric forms. . . . . . . . . . . . . . . 209 6. Bounds for the dimensions of spaces of symmetric forms. . . . . . . 218 7. The complex quadric of dimension three. . . . . . . . . . . . . . . . . . 223 8. The rigidity of the complex quadric. . . . . . . . . . . . . . . . . . . . . . 229 9. Other proofs of the infinitesimal rigidity of the quadric. . . . . . . . 232 10. The complex quadric of dimension four. . . . . . . . . . . . . . . . . . . 234 11. Forms of degree one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 CHAPTER VII The rigidity of the real Grassmannians 1. The rigidity of the real Grassmannians . . . . . . . . . . . . . . . . . . . 244 2. The real Grassmannians G¯R . . . . . . . . . . . . . . . . . . . . . . . . . . 249 n,n CHAPTER VIII The complex Grassmannians 1. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 2. The complex Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . 258 3. Highest weights of irreducible modules associated with the complex Grassmannians . . . . . . . . . . . . . . . . . . . 270 4. Functions and forms on the complex Grassmannians . . . . . . . . . 274 TABLEOFCONTENTS vii 5. ThecomplexGrassmanniansofranktwo. . . . . . . . . . . . . . . . . . 282 6. The Guillemin condition on the complex Grassmannians . . . . . . 287 7. Integrals of forms on the complex Grassmannians. . . . . . . . . . . . 293 8. Relations among forms on the complex Grassmannians. . . . . . . . 300 9. The complex Grassmannians G¯C . . . . . . . . . . . . . . . . . . . . . . 303 n,n CHAPTER IX The rigidity of the complex Grassmannians 1. The rigidity of the complex Grassmannians. . . . . . . . . . . . . . . . 308 2. On the rigidity of the complex Grassmannians G¯C . . . . . . . . . . 313 n,n 3. The rigidity of the quaternionic Grassmannians. . . . . . . . . . . . . 323 CHAPTER X Products of symmetric spaces 1. Guillemin rigidity and products of symmetric spaces . . . . . . . . . 329 2. Conformally flat symmetric spaces . . . . . . . . . . . . . . . . . . . . . . 334 3. Infinitesimal rigidity of products of symmetric spaces. . . . . . . . . 338 4. The infinitesimal rigidity of G¯R . . . . . . . . . . . . . . . . . . . . . . . . 340 2,2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 This page intentionally left blank INTRODUCTION This monograph is motivated by a fundamental rigidity problem in Riemannian geometry: determine whether the metric of a given Rieman- niansymmetricspaceofcompacttypecanbecharacterizedbymeansofthe spectrum of its Laplacian. An infinitesimal isospectral deformation of the metric of such a symmetric space belongs to the kernel of a certain Radon transform defined in terms of integration over the flat totally geodesic tori of dimension equal to the rank of the space. Here we study an infinitesi- mal version of this spectral rigidity problem: determine all the symmetric spaces of compact type for which this Radon transform is injective in an appropriate sense. We shall both give examples of spaces which are not infinitesimally rigid in this sense and prove that this Radon transform is injective in the case of most Grassmannians. Atpresent,itisonlyinthecaseofspacesofrankonethatinfinitesimal rigidityinthissensegivesrisetoacharacterizationofthemetricbymeans ofitsspectrum. Inthecaseofspacesofhigherrank,therearenoanalogues ofthisphenomenonandtherelationshipbetweenthetworigidityproblems is not yet elucidated. However, the existence of infinitesimal deformations belonging to the kernel of the Radon transform might lead to non-trivial isospectral deformations of the metric. Here we also study another closely related rigidity question which arises from the Blaschke problem: determine all the symmetric spaces for which the X-ray transform for symmetric 2-forms, which consists in inte- grating over all closed geodesics, is injective in an appropriate sense. In the case of spaces of rank one, this problem coincides with the previous Radon transform question. The methods used here for the study of these two problems are similar in nature. Let (X,g) be a Riemannian symmetric space of compact type. Con- sider a family of Riemannian metrics {gt} on X, for |t| < ε, with g0 = g. The family {g } is said to be an isospectral deformation of g if the spec- t trum of the Laplacian of the metric g is independent of t. We say that t the space (X,g) is infinitesimally spectrally rigid (i.e., spectrally rigid to first-order) if, for every such isospectral deformation {g } of g, there is a t one-parameter family of diffeomorphisms {ϕ } of X such that g =ϕ∗g to t t t first-order in t at t = 0, or equivalently if the symmetric 2-form, which is equal to the infinitesimal deformation d g of {g }, is a Lie derivative dt t|t=0 t of the metric g.