ebook img

Radio network planning and resource optimization : mathematical models and algorithms for UMTS, WLANs, and ad hoc networks PDF

249 Pages·2008·4.85 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Radio network planning and resource optimization : mathematical models and algorithms for UMTS, WLANs, and ad hoc networks

Link¨opingStudiesinScienceandTechnology DissertationsNo.1116 Radio Network Planning and Resource Optimization: Mathematical Models and Algorithms for UMTS, WLANs, and Ad Hoc Networks Iana Siomina DepartmentofScienceandTechnology Linko¨pingUniversity,SE-60174Norrko¨ping,Sweden Norrko¨ping2007 Link¨opingStudiesinScienceandTechnology,DissertationsNo.1116 Radio Network Planning and Resource Optimization: MathematicalModelsandAlgorithmsforUMTS,WLANs,andAdHocNetworks IanaSiomina ImageonfrontcoverwasdesignedbyIanaSiomina. ISBN978-91-85831-44-9 ISSN0345-7524 http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-9158 Copyright(cid:2)c2007,IanaSiomina,unlessotherwisenoted PrintedbyLiU-Tryck,Linko¨ping,Sweden,2007 i Abstract Thetremendouspopularityofwirelesstechnologiesduringthelastdecadehascreatedacon- siderable expansion of wireless networks both in size and use. This fact, together with a great variety of mobile devices and numerous different services that are becoming increas- ingly resource-demanding, have attracted the attention of many researchers into the area of radio resource planning and optimization. Due to network complexity, these tasks require intelligent,automatedapproachesthatareabletodealwithmanyfactorsinordertoenable designofhighcapacitynetworkswithahighservicequalityatthelowestpossiblecost. This isaperfectapplicationofoptimizationtheory. Inthisthesis,mathematicaloptimizationisconsideredasthemainapproachtodesigning and improving the performance of wireless networks such as Universal Mobile Telecommu- nications System (UMTS), Wireless Local Area Networks (WLANs) and ad hoc networks. Due to different underlying access technologies, the optimization goals, design parameters andsystemlimitationsvarybynetworktype. Therefore,thegoalsofthepresentedworkare to identify a relevant optimization problem for each type of network, to model the problem and to apply the optimization approach in order to facilitate wireless network planning and improveradioresourceutilization. The optimization problems addressed in this thesis, in the context of UMTS networks, focusonminimizingthetotalamountofpilotpowerwhich,fromthemodelingpointofview, is not just an amount of power consumed by a certain type of control signal, but also an indicatoroftheinterferencelevelinthenetworkandmeansofcontrollingcellcoverage. The presentedmodelsandalgorithmsenableflexiblecoverageplanningandoptimizationofpilot powerandradiobasestationantennaconfigurationinlargenetworks. For WLANs, in the first part of the study, the access point placement and the channel assignmentproblemsareconsideredjointlytomaximizenetuserthroughputandminimizeco- and adjacent channel interference and contention. The second part of the study addresses the contention issue and involves, among the other decisions, optimization of access point transmitpower. Due to the dynamic and infrastructureless nature of ad hoc networks, static resource planningislesssuitableforthistypeofnetwork. Twoalgorithmicframeworkswhichenable dynamictopologycontrolforpower-efficientbroadcastinginstationaryandmobilenetworks are presented. In both frameworks, the performance of the presented algorithms is studied bysimulations. Keywords: planning, optimization, wireless networks, radio resources, UMTS, WLAN, ad hoc,pilotpower,accesspointlocation,channelassignment,powerallocation,power-efficient broadcast. ii iii Popul¨arvetenskaplig Sammanfattning Tr˚adlo¨san¨atverkharunderdetsenaste˚artiondetblivitenormtpopula¨ra. Ikombinationmed attdetfinnsm¨angderavmobilaenheterochresurskra¨vandetja¨nsterhardensnabbautbyg- gnaden av nya na¨tverk medf¨ort ¨okad forskningsverksamhet inom planering och optimering av radioresurser. Tr˚adlo¨sa n¨atverk ¨ar v¨aldigt komplexa och fo¨r att utforma dessa s˚a att de har ho¨g kapacitet och p˚alitlighet till en l˚ag kostnad kra¨vs intelligenta tillva¨gag˚angss¨att som tarh¨ansyntillflertaletfaktorer;dettautgo¨renperfekttilla¨mpningfo¨roptimeringsteori. I den h¨ar avhandlingen anva¨nds huvudsakligen optimering fo¨r att designa och fo¨rba¨ttra tr˚adlo¨san¨atverksomUniversalMobileTelecommunicationsSystem(UMTS),WirelessLocal Area Networks (WLANs) och ad hoc-n¨atverk. Dessa nyttjar olika˚atkomsttekniker, varfo¨r aspekter som optimeringsfokus, designparametrar och systembegr¨ansningar varierar mellan na¨tverken. Syftet med avhandlingen a¨r att identifiera och presentera relevanta optimer- ingsproblemfo¨rolikatr˚adlo¨san¨atverkstyper,modelleraproblemenochda¨reftertill¨ampaop- timeringf¨orattunderla¨ttaplaneringsamteffektiviseranyttjandetavradioresurser. Optimeringsproblemensomber¨orUMTS-n¨atverkhandlaromattminimeradeneffektsom ˚atg˚arf¨oruts¨andningavenspeciellsignalsekvenssomblandannatanva¨ndsf¨orattskattaegen- skapernahosenkommunikationskanal. Deframtagnamodellernaochalgoritmernamo¨jliggo¨r optimering av utsa¨nd effektniv˚a f¨or dessa signaler, flexibel planering av ta¨ckningsomr˚aden samtregleringavbasstationersantennkonfigurationisto¨rren¨atverk. Arbetet g¨allande WLAN handlar dels om hur man la¨mpligen placerar ut accesspunkter varsuppgifta¨rattsammankopplana¨rliggandeenhetertillettna¨tverk. Dettainnefattara¨ven hur dessa accesspunkter b¨or tilldelas olika kanaler i syfte att maximera datao¨verfo¨ring samt minimeraolikast¨orningsfaktorer. Dessutompresenterasenstudiesomblandannatfokuserar p˚aoptimeringavutsa¨ndningseffekthosutlokaliseradeaccesspunkter. Statisk resursplanering a¨r ol¨ampligt f¨or ad hoc-n¨atverk, som karakta¨riseras av f¨ora¨nder- lighet och avsaknad av fast infrastruktur. I avhandlingen presenteras tv˚a algoritmer f¨or dynamisk topologikontroll som kan nyttjas fo¨r att uppn˚a energieffektiv uts¨andning i s˚ava¨l station¨arasommobilan¨atverk. Algoritmernaa¨rutv¨arderadegenomsimuleringar. iv v Acknowledgments I wish to express my deepest and sincere gratitude to my supervisor Di Yuan, Associate ProfessorandtheheadofMobileTelecommunicationsgroupattheDepartmentofScienceand Technology(ITN),forhisexcellentguidancethroughoutthefouryearsIspentatLinko¨ping University and continuously challenging me to generate new ideas. It has been a great pleasure for me to work with such an excellent researcher and extraordinary person, from whom I tried to learn as much as I could. I also wish to thank Professor Peter Va¨rbrand, my supervisor and the head of our department, for offering me this PhD position and his supportandencouragementthroughoutthesefouryears,aswellasforalwaysbeingopento newideasandreadytohelp. I am very grateful for the financial support I received enabling my research during the four years provided by Center for Industrial Information Technology (CENIIT), Linko¨ping InstituteofTechnology,underproject“OptimalDesignochEffektivePlaneringavTelekom- munikationssystem”. I also appreciate the financial support I received during the last two years from Swedish Research Council (Vetenskapsr˚adet) within two projects: “Mathemati- cal Optimization in the Design of UMTS Networks” and “Energy-efficient Broadcasting in MobileAdHocNetworks: DistributedAlgorithmsandPerformanceSimulation”. I also wish to thank my current manager at Ericsson Research, Johan Lundsjo¨, and the Spirit project for financially supporting my travel to two recent conferences: the 5th IEEE Intl. Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks(WiOpt2007)andthe8thIEEEIntl.SymposiumonaWorldofWireless,Mobile andMultimediaNetworks(WoWMoM2007). MyresearchworkonUMTSnetworksdefinitelybenefittedfromtechnicaldiscussionswith Dr.FredrikGunnarsson and his colleagues at Ericsson Research in Linko¨ping, who are also acknowledgedforprovidingatestdataset. Also,IamverygratefultoDr.FredrikGunnarsson, who was the opponent at my Licentiate seminar in March 2005, for his valuable comments andsuggestionsontheLicentiatethesis. My special thanks go to the group of the EU project Momentum IST-2000-28088 for making publicly available the data sets for several European cities, which definitely made theresultsofmyworkonUMTSnetworkplanningandoptimizationmorevaluablefromthe applicationpointofview. I am very thankful to COST (European Cooperation in the field of Scientific and Tech- nical Research) Action TIST 293 “Graphs and Algorithms in Communication Networks” for a financial support of my Short-Term Scientific Mission, and the optimization group at Zuse Institute of Berlin, in particular Dr.AndreasEisenbla¨tter and Hans-FlorianGeerdes, for hosting the STSM which resulted in a joint paper that won the Best Paper Award in HelsinkiattheWoWMoM2007Symposium. Also,IwishtothankHans-Florianforprovid- inghisvisualizationsoftwareIusedforgeneratingnicefiguresinChapter7. JaouharJemai from Braunschweig Technical University is also acknowledged for generating radio propaga- tiondataforaWLAN. I am grateful to Dr. Peter Brostro¨m, Dr. Sandro Bosio, and Dr. Anders Peterson for vi their detailed comments and practical suggestions that were very helpful in improving the presentation quality of this thesis. I would also like to thank my colleagues at ITN for a friendlyandinspiringatmosphereinthedepartment. Finally,Iwouldliketoexpressmythankstomyfamilyfortheirloveandcontinuedcare, supportandencouragement,andtomyfriendsfortheirbeliefinmeandbeingnear. Norrk¨oping,September2007 IanaSiomina vii Contents Abbreviations xv 1 Introduction 1 1.1 RadioNetworkPlanningandResourceOptimization . . . . . . . . . . . . . . 1 1.1.1 Planning,OptimizationorBoth? . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Some Classical Optimization Problems in Radio Network Design and RecentTrends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 MathematicalProgrammingasanOptimizationTool. . . . . . . . . . . . . . 4 1.2.1 LinearProgramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 IntegerandMixed-IntegerProgramming . . . . . . . . . . . . . . . . . 5 1.2.3 Solution Methods and Techniques for Integer and Mixed-Integer Pro- grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 ScopeandStructureoftheThesis . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 ThesisOutlineandOrganization . . . . . . . . . . . . . . . . . . . . . 13 1.3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.3 Publications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Bibliography 16 I Network Planning and Resource Optimization for UMTS 25 2 Introduction to UMTS Networks and CPICH Power Management 27 2.1 3GNetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.1 TheEvolutiontowards3G. . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.2 WidebandCodeDivisionMultipleAccess(WCDMA) . . . . . . . . . 29 2.1.3 UMTSNetworkArchitecture . . . . . . . . . . . . . . . . . . . . . . . 30 2.2 PlanningandOptimizationforUMTSNetworks . . . . . . . . . . . . . . . . 31 2.2.1 ChallengesArisinginUMTSNetworks . . . . . . . . . . . . . . . . . . 32 2.2.2 AutomatedNetworkPlanningandOptimization . . . . . . . . . . . . 33 2.2.3 RadioBaseStationConfigurationParameters . . . . . . . . . . . . . . 35 2.3 PilotPowerManagementinUMTSNetworks . . . . . . . . . . . . . . . . . . 37 2.3.1 CommonPilotChannel . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.2 PilotPowerControlChallenges . . . . . . . . . . . . . . . . . . . . . . 39 2.3.3 PilotPowerAssignmentApproachesandRelatedWork . . . . . . . . 41 3 A Basic Model for CPICH Coverage Optimization 45 3.1 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 EnsuringSmoothHandoverbyAdjustingPowerGainParameters. . . . . . . 48 3.3 OptimizationProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 TwoAdHocSolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.1 UniformPilotPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.2 Gain-basedPilotPower . . . . . . . . . . . . . . . . . . . . . . . . . . 52 viii Contents 3.5 MathematicalProgrammingFormulations . . . . . . . . . . . . . . . . . . . . 53 3.5.1 Cell-binFormulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.2 EnhancedFormulations . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.6 ASolutionApproachBasedonLagrangianRelaxation . . . . . . . . . . . . . 58 3.6.1 AlgorithmOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.6.2 LagrangianRelaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6.3 APrimalHeuristicProcedure . . . . . . . . . . . . . . . . . . . . . . . 61 3.7 ASolutionApproachBasedonColumnGeneration . . . . . . . . . . . . . . . 63 3.7.1 TheColumnGenerationMethod . . . . . . . . . . . . . . . . . . . . . 64 3.7.2 AnIterativeRoundingProcedure . . . . . . . . . . . . . . . . . . . . . 65 3.8 NumericalStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.8.1 Numerical Experiments without Ensuring Smooth Handover and Dis- cretizingtheCPICHPowerRange . . . . . . . . . . . . . . . . . . . . 67 3.8.2 NumericalSolutionsObtainedbyDiscretizingtheCPICHPowerRange 72 3.8.3 NumericalResultsforSmoothHandover . . . . . . . . . . . . . . . . . 74 3.9 DiscussionandConclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4 Pilot Power Optimization for Partial Coverage 77 4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 SystemModelandOptimizationProblem . . . . . . . . . . . . . . . . . . . . 77 4.3 AdHocSolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3.1 UniformPilotPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3.2 Gain-basedPilotPower . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4 IntegerProgrammingFormulations . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4.1 AFormulationBasedonDirectAssignment . . . . . . . . . . . . . . . 80 4.4.2 AFormulationBasedonIncrementalPower . . . . . . . . . . . . . . . 80 4.5 ASolutionApproachBasedonLagrangianRelaxation . . . . . . . . . . . . . 80 4.6 NumericalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5 OptimizationofRadioBaseStationAntennaConfigurationandPilotPower 87 5.1 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 OptimizationProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3 SolutionApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3.1 GeneratingNewSolutions . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.3.2 AlgorithmParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.3.3 TheOptimizationAlgorithm . . . . . . . . . . . . . . . . . . . . . . . 94 5.4 PerformanceMetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.5 NumericalExperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5.1 TestNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5.2 OptimizationResults. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Bibliography 102 II Coverage Planning and Radio Resource Optimization for Wireless LANs 107 6 Introduction to Wireless LANs 109 6.1 TechnicalBackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 IEEE802.11WLANArchitecture. . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3 MediaAccessControlinIEEE802.11WLANs . . . . . . . . . . . . . . . . . 112

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.