ebook img

Radio-Frequency Capacitive Discharges PDF

305 Pages·1995·30.732 MB·English, Russian
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Radio-Frequency Capacitive Discharges

Radio-Frequencv Yuri Pa Raizer Mikhail N. Shneider Nikolai A. Yatsenko CRC Press Boca Raton London New York Washington, D.C. Library of Congress Cataloging-in-Publication Data Catalog record is available from the Library of Congress. This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the conse- quences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any infor- mation storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. Visit the CRC Press Web site at www.crcpress.com O 1995 by CRC Press LLC No claim to original U.S. Government works International Standard Book Number 0-8493-8644-6 Contents Preface 1 Basic principles of the RF capacitive discharge 1.1 Excitation of an RF discharge . . . . . . . . . . . . . . . . . . 1.2 Electron motion in an oscillating electric field . . . . . . . . . . 1.2.1 Velocity and displacement . . . . . . . . . . . . . . . . 1.2.2 Electron energy . . . . . . . . . . . . . . . . . . . . . 1.3 Electrodynamic plasma characteristics and interaction with oscil- lating fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Current components . . . . . . . . . . . . . . . . . . . 1.3.2 High-frequency plasma conductivity and dielectric per- mittivity . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.3 Plasma frequency . . . . . . . . . . . . . . . . . . . . 1.3.4 The Joule heat of current . . . . . . . . . . . . . . . . . 1.3.5 The ratio of conduction and displacement currents . . . . 1.3.6 Criteria for electric field quasipotentiality . . . . . . . . 1.3.7 Electromagnetic wave penetration into the plasma and the field potentiality criteria . . . . . . . . . . . . . . . . . 1.4 Electron production and losses: Plasma maintenance . . . . . . 1.4.1 Electron impact ionization . . . . . . . . . . . . . . . . 1.4.2 Stepwise ionization and other mechanisms . . . . . . . . 1.4.3 Electron loss mechanisms . . . . . . . . . . . . . . . . 1.4.4 Weakly ionized nonequilibrium plasma maintenance by the field . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 A simplified model of the RF discharge . . . . . . . . . . . . . 1.5.1 Electrode space charge sheaths . . . . . . . . . . . . . . 1.5.2 Phenomenological description of the evolution of charge density, field, and potential . . . . . . . . . . . . . . . . 1.5.3 Equations for discharge parameters . . . . . . . . . . . 1.5.4 Discharge current . . . . . . . . . . . . . . . . . . . . 1.5.5 'Impedance' of the discharge plasma space . . . . . . . 1.6 Constant positive plasma potential . . . . . . . . . . . . . . . . CONTENTS 1.6.1 Oscillation amplitude and positive plasma potential at moderate pressures . . . . . . . . . . . . . . . . . . . . 1.6.2 Low pressures . . . . . . . . . . . . . . . . . . . . . . 1.6.3 Dielectric-coated electrodes . . . . . . . . . . . . . . . 1.7 Stochastic heating of electrons . . . . . . . . . . . . . . . . . . 1.7.1 The physical mechanism . . . . . . . . . . . . . . . . . 1.7.2 Evaluation of dissipated power and electrical resistance . 1.7.3 Absence of effect for steady-state distribution of relative electron velocities . . . . . . . . . . . . . . . . . . . . 1.7.4 Electron recoil from low ion density sheaths . . . . . . . 1.8 RF discharge modes . . . . . . . . . . . . . . . . . . . . . . . 1.8.1 The current-voltage characteristic and ignition of a mode- rate-pressure a-discharge . . . . . . . . . . . . . . . . 1.8.2 Ignition of a y-discharge . . . . . . . . . . . . . . . . . 1.8.3 The a-y transition as a result of the a-sheath breakdown 1.8.4 Moderate and low pressures . . . . . . . . . . . . . . . Moderate-pressure RF discharges 45 2.1 Space charge sheaths . . . . . . . . . . . . . . . . . . . . . . . 45 2.1.1 Formulation of a simplified problem for discharge simulation 45 2.1.2 The sheath structure and current balance in steady a- and y-discharges . . . . . . . . . . . . . . . . . . . . . . . 47 2.1.3 Formation of the and y-discharge patterns from an Q- arbitrary initial state . . . . . . . . . . . . . . . . . . . 52 2.1.4 Analwcal and semi-analytical sheath models based on the cycle average ion density . . . . . . . . . . . . . . . 55 2.2 Experimental current-voltage characteristics . . . . . . . . . . . 56 2.3 CVC and normal current densities in the a-discharge (theory and numerical simulation) . . . . . . . . . . . . . . . . . . . . . . 59 2.3.1 Physical premises for normal current density and limits in pandL . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.3.2 Heating and vibrational relaxation in a molecular gas . . 61 2.3.3 Gas heating effect on the CVC and normal current density 65 2.3.4 Disappearance of the normal current density effect at low frequency or pressure . . . . . . . . . . . . . . . . . . 68 2.3.5 Stepwise ionization and normal current density in light gases . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2.4 The a-y transition parameters . . . . . . . . . . . . . . . . . . 72 2.4.1 A simple analytical evaluation of the transition parameters 72 2.4.2 Extension of the Townsend breakdown criterion to an oscillating sheath . . . . . . . . . . . . . . . . . . . . . 74 2.4.3 Comparison of calculations and experimental data . . . . 76 2.5 The y-discharge . . . . . . . . . . . . . . . . . . . . . . . . . 77 2.5.1 Specific features of the y-discharge: Normal current density 77 CONTENTS v 2.5.2 Analytical model of the electrode sheath . . . . . . . . . 2.5.3 The CVC and normal sheath parameters subject to nonlo- cal effects . . . . . . . . . . . . . . . . . . . . . . . . 2.5.4 Negative glow and the Faraday dark space . . . . . . . . 2.5.5 PC-free y-discharge: PC in the a- and y-modes . . . . . 2.5.6 Discharge contraction and its absence . . . . . . . . . . 2.6 The a-y transition at moderate and low pressures . . . . . . . . 2.7 Coexistence of two RF modes in the gap . . . . . . . . . . . . . 2.7.1 'Parallel' operation of the a- and y-discharge modes . . 2.7.2 'Series connection' of two a- or a- and y-discharges . . 2.8 High-pressure RF capacitive discharges . . . . . . . . . . . . . 2.8.1 RF discharges in narrow air gaps . . . . . . . . . . . . . 2.8.2 'Single-electrode' torch discharge . . . . . . . . . . . . 2.9 RF discharge with coated electrodes . . . . . . . . . . . . . . . 2.9.1 Normal current density decrease in the a-discharge . . . 2.9.2 Normalization of 'subnormal' current densities in the y- discharge . . . . . . . . . . . . . . . . . . . . . . . . . 2.9.3 Coexistence of two discharge modes . . . . . . . . . . . 2.9.4 Dielectric-stabilized subnormal y-discharge . . . . . . . 3 Low-pressure RF discharges and asymmetry effects 3.1 Self-bias in an asymmetric capacitively coupled discharge . . . . 3.1.1 Experimental data . . . . . . . . . . . . . . . . . . . . 3.1.2 Physical mechanism: A linear 'electrical engineering' model . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Correlations between plasma and sheath parameters in an arnbipo- lar diffusion-controlled discharge . . . . . . . . . . . . . . . . 3.2.1 Ratios of average voltage fall and sheath thickness . . . 3.2.2 Evaluation of sheath and plasma parameters and of dis- charge current-voltage characteristic at moderately low pressures . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Sheath dynamics and current anharmonicity in an asymmetric discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Current anharmonicity in asymmetric and symmetric discharges . 3.5 Battery effect in an asymmetric discharge . . . . . . . . . . . . 3.5.1 Sheath dynamics and direct current at low pressures . . . 3.5.2 Self-bias and direct current in moderate-pressure discharges . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Plasma 'nontransparency' and fast electron response to RF field and 'oscillationless' sheath ions . . . . . . . . . . . . . . . . . 3.7 The floating potential . . . . . . . . . . . . . . . . . . . . . . . 3.8 The a-sheath . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8.1 Analytical theory of an ionization-free sheath . . . . . . 3.8.2 Analytical solution for a collisionless sheath . . . . . . . CONTENTS 3.8.3 Boltzmann distribution n.(x. t)f or a collisionless sheath 3.8.4 Collisional sheath with a constant ion path length: The plasma-sheath boundary condition . . . . . . . . . . . . 3.9 The energy spectrum of ions bombarding the electrode surface . 3.10 RF discharge in electronegative gases . . . . . . . . . . . . . . 3.10.1 Results of numerical simulation . . . . . . . . . . . . . 3.10.2 Some effects at n, >> n, . . . . . . . . . . . . . . . . . 3.1 1 Smooth a-7 transition and the -/-mode . . . . . . . . . . . . . 3.11.1 The electron energy distribution function and fast elec- trons generated by stochastic heating . . . . . . . . . . . 3.12 Some aspects of stochastic heating of electrons . . . . . . . . . 3.12.1 Collisionless energy dissipation . . . . . . . . . . . . . 3.12.2 Maximum electron energy achievable by stochastic heating . . . . . . . . . . . . . . . . . . . . . . . .. . 3.13 Numerical simulation of low-pressure RF discharges . . . . . . 3.13.1 The hydrodynamic approximation . . . . . . . . . . . . 3.13.2 The two-poup model . . . . . . . . . . . . . . . . . . 3.13.3 The Monte-Carlo method . . . . . . . . . . . . . . . . 3.13.4 The super-particle method . . . . . . . . . . . . . . . . 3.13.5 The convective scheme . . . . . . . . . . . . . . . . . 3.14 Magnetron RF discharge . . . . . . . . . . . . . . . . . . . . . 4 Experimental methods and measurements 4.1 Voltage measurements and current-voltage characteristics . . . . 4.2 Probe measurement of constant space and plasma potentials . . . 4.2.1 Connection of a blocking element to the probe circuit . . 4.2.2 Experimental check on the choice of a blocking element and measurements . . . . . . . . . . . . . . . . . . . . 4.2.3 Measurement of maximum constant plasma potential . . 4.3 Active dc probing of an RF discharge . . . . . . . . . . . . . . 4.3.1 Longitudinal probing . . . . . . . . . . . . . . . . . . . 4.3.2 Transverse probing . . . . . . . . . . . . . . . . . . . . 4.4 A method for studying the transverse discharge structure . . . . 4.5 Optical methods for the study of spatial discharge structure . . . 4.6 Laser-induced fluorescence and laser-optogalvanic spectroscopy . 4.7 Excitation and control of an RF discharge . . . . . . . . . . . . 4.7.1 Self-excited tube generators . . . . . . . . . . . . . . . 4.7.2 Real RF-generator design for discharge studies . . . . . 4.7.3 Gap impedance change with discharge excitation . . . . 4.7.4 Gap voltage control by varying output contour regulating capacitance . . . . . . . . . . . . . . . . . . . . . . . . CONTENTS vii 5 Application of RF capacitive discharges for gas laser excitation and plasma technology 225 5.1 RF discharge and gas lasers: A brief history . . . . . . . . . . . 225 5.2 Arguments in favor of RF laser excitation . . . . . . . . . . . . 227 5.2.1 Feasibility of slab systems with diffusional cooling . . . 228 5.2.2 Infeasibility of a dc discharge in the slab geometry . . . 230 5.2.3 Effectiveness of transverse RF discharge in the slab ge- ometry . . . . . . . . . . . . . . . . . . . . . . . . . . 231 5.3 Frequency dependence of discharge and active laser medium pa- rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 5.4 Selection of designs and parameters of transverse RF-excited C02 lasers with diffusional cooling . . . . . . . . . . . . . . . . . . 238 5.4.1 Restrictions on field frequency in slab and capillary C02 lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 5.4.2 Restriction on discharge current to avoid a-y transition 240 5.4.3 Adverse effect of a-y coexistence in a slab . . . . . . . 241 5.4.4 The use of combined y-a nd a-modes in COz lasers . . . 244 5.4.5 Multichannel laser systems . . . . . . . . . . . . . . . . 245 5.5 Optical resonators of waveguide and slab RF COz lasers . . . . . 249 5.5.1 Stable multipass and unstable resonators . . . . . . . . . 249 5.5.2 Optically coupledmultichannellaser systems . . . . . . 251 5.6 High flowrate COz lasers excited by RF and combined RF-dc discharges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 5.6.1 Specific power input limits in diffusional and convective cooling . . . . . . . . . . . . . . . . . . . . . . . . . . 253 5.6.2 Stabilization of combined transverse RF-dc discharge . . 254 5.6.3 A small gap as the major factor of RF discharge stability 257 5.6.4 Laser setups . . . . . . . . . . . . . . . . . . . . . . . 258 5.7 Lasers with alternative active media . . . . . . . . . . . . . . . 260 5.8 Magnetic stabilization of slab discharges . . . . . . . . . . . . . 262 5.9 Plasmachemical technology . . . . . . . . . . . . . . . . . . . 264 5.9.1 Etching . . . . . . . . . . . . . . . . . . . . . . . . . 265 5.9.2 Deposition of thin films and coatings . . . . . . . . . . 268 References 271 Index 291 Preface At present, there is a growing interest in radio-frequency (RF) capacitive gas dis- charges of low and moderate pressures. This is one of the most exciting areas in fundamental and applied physics of gas discharge and gas electronics. An RF dis- charge is produced by applying alternating voltage of the MHz range, typically 13.56 MHz, to metallic or dielectric-coated electrodes. Two major applications have stimulated interest in the study of physical phenomena occurring during an RF capacitive discharge: (i) the use of moderate-pressure discharges O, sz 1C- 100 Torr) to create an active medium in high-efficiency, reliable and small-size CO? lasers, and (ii) the use of low-pressure discharges (p = 10-~-1 Torr) in plasma and etching technologies for various treatments of semiconductor materi- als, for thin film deposition, etc. Nowadays, about a quarter of the world's com- mercial C02l asers operate on RF discharges, which are in many respects superior to direct current discharges. RF reactors for ion bombardment of semiconductor materials are widely employed in the newest industrial technologies. Publications on RF discharges in current periodicals are quite numerous. Nearly each issue of the world's leading physics journals contains a paper or two on this or related subjects, because the processes involved in RF discharges are very complex and exhibit many specific features that are not easy to analyze and interpret. However, there is still no monograph that would systematize and discuss the accumulated data in terms of a modem physical theory and would also describe experimental techniques and RF plasma diagnostics. To our knowledge, only two recent books contain short chapters on the fundamentals of RF capacitive discharges. One of them (B. Chapman 1980) largely describes low-pressure discharges, and the other (Yu. Raizer 1987, 1991) describes moderate-pressure discharges. Since many research physicists and engineers today deal with these discharges and many others are making their first steps, the authors have made an attempt to present the available knowledge and experience in a monograph that is intended to serve as a textbook and a reference book for those interested in this rapidly developing area of physics. The list of references is fairly large but does not claim to be exhaustive. We could not include or comment on the numerous original data available in the literature. Our presentation is primarily based on material, appropriately transformed in the

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.