Sede Amministrativa: Università degli Studi di Padova - Dipartimento di Ingegneria dell’Informazione ___________________________________________________________________ SCUOLA DI DOTTORATO DI RICERCA IN INGEGNERIA DELL’INFORMAZIONE INDIRIZZO: Scienza e tecnologia dell’informazione CICLO: XXVIII RADIO COMMUNICATIONS USING ORBITAL ANGULAR MOMENTUM Direttore della Scuola: Ch.mo Prof. Matteo Bertocco Coordinatore d’indirizzo: Ch.mo Prof. Carlo Ferrari Supervisore: Prof. Luca Palmieri Dottorando: Fabio Spinello Thereareonlytwopossibleoutcomes: iftheresultconfirmsthehypothesis, thenyou’vemadeameasurement. Iftheresultiscontrarytothe hypothesis,thenyou’vemadeadiscovery. –EnricoFermi Godhelpus;we’reinthehandsofengineers. –Dr. IanMalcolm-JurassicPark Abstract Orbital Angular Momentum (OAM) is a fundamental property of electromagnetic fields, associ- ated to helicity of waves phase fronts. Like frequency and polarization, it represents a degree of freedomofanelectromagneticfieldandcanbeusedforitsidentification. Infact,twowaveswith the same frequency but different OAM values can be distinguished from each other when their whole phase fronts are collected. Electromagnetic fields with nonzero OAM form an orthogonal basisandcanbediscriminated,withoutanydigitalpostprocessing,atthephysicallayer. Forthis reason, they represent an interesting tool for the development of new multiplexing systems that betterexploittheelectromagneticspectrum. Withinthiscontext,thisthesispresentsthemainresultsoftheoreticalandexperimentalstud- ies on the application of OAM waves to radio multiplexing systems. It starts by considering the state-of-the-art of radio OAM waves, in order to identify features and applications concerning telecommunications. Then,itexaminesspecialparabolicantennas,alsoknownasconformalan- tennas, that can generate and recognize electromagnetic waves at radio frequency with integer values of OAM. These antennas are then employed in practical experiments to test long-range multiplexingsystemprototypes, wherethreechannelsaretransmittedandreceivedonthesame frequencyandpolarizationstate. TheexperimentsstudythedifficultiesofexploitingOAMmodes orthogonalityoverlongdistances. Infact,duetodiffraction,thesizeoffielddistributionsincreases more and more during propagation. Therefore, over long distances, it is necessary to use large antennas to collect their whole phase fronts. To overcome this problem and reduce the size of the received fields two interesting solutions are presented. The first one concerns a particular effect of field concentration that can be obtained superimposing electromagnetic waves with in- teger and consecutive values of OAM. The second one, on the contrary, studies the generation processforaspecialclassofOAMfields,calledhigherordervortexbeams,thatarecharacterized byamorecompactintensitydistribution. Hence,thethesisconsidersthepossibilityofdistinguish radiowaveswithdifferentOAMvaluesbyreceivingonlyasmallportionofthephasefronts. This latter study, developed by using MIMO systems theory and theoretical models on OAM beams v ABSTRACT propagation,focusesalsointhecomparisonbetweengeneralmultiplexingsystemsbasedonto- day MIMO technology with the ones based on OAM waves. The analysis of long-range systems isthenconcludedbyexamining,boththeoreticallyandexperimentally,thesuperpositionofwaves with opposite values of OAM. These fields, in fact, are characterized by a more regular distri- bution and can be useful in simplifying the structure of OAM-based communication systems. In the end, the thesis considers short range communications where OAM waves are used not only for multiplexing purposes but also to increase, directly at the physical layer, the communication security. vi Sommario Il momento angolare orbitale, normalmente identificato con l’acronimo inglese OAM (Orbital An- gular Momentum), é una proprietá fondamentale dei campi elettromagnetici legata alla loro dis- tribuzione; campi con OAM diverso da zero sono infatti caratterizzati da intensitá a forma di ciambella e da fronti d’onda che si avvolgono a spirale. Al pari della frequenza, anche l’OAM rappresenta un grado di libertá di un’onda elettromagnetica e puó essere utilizzato per la sua identificazione. Infatti, due campi aventi la stessa frequenza ma diverso valore di OAM possono essere distinti quando i loro fronti d’onda vengono ricevuti interamente. Questa caratteristica fa sí che i campi elettromagnetici con OAM formino una base ortogonale e che possano essere distintidirettamentealivellofisico,senzailbisognodipostprocessingdigitale. LeondeconOAM sonoquindiparticolarmenteinteressantiperlosviluppodinuovisistemiradiomultiplexingsiasu lungachesubrevedistanza,argomentoesaminatosiateoricamentechesperimentalmentenella presentetesi. Lo studio inizia con l’esame dello stato dell’arte sulle onde radio con OAM per individuarne caratteristiche ed applicazioni legate alle telecomunicazioni. Viene quindi studiato un partico- laretipodiantenneparaboliche,detteanche“conformate”,ingradodigenerareediriconoscere onde radio con diversi valori di OAM. Usando queste antenne, viene quindi condotto uno stu- dio sperimentale per valutare un prototipo di sistema multiplexing su lunga distanza, composto da tre canali isofrequenziali. L’esperimento evidenzia le difficoltá, precedentemente individuate nellafasedistudio,riguardantil’implementazionediunsimilesistema. Durantelapropagazione, infatti, i fronti d’onda si espandono a causa della diffrazione e risulta complicato riceverli inter- amente senza l’impiego di antenne ingombranti. Questo comporta una notevole difficoltá nello sfruttamento dell’ortogonalitá fra onde radio con OAM su lunghe distanze e costituisce un forte limiteall’implementazionediunsistemamultiplexing. Perovviareaquestoproblemalatesiesam- inatrepossibilisoluzioni. Nellaprimaconsideraunmetodoperconcentrareladistribuzionediun campoelettromagneticoconOAMmediantelasovrapposizionedimodiinterieconsecutivi. Nella seconda,studialagenerazionedicampiconOAMdetti“diordinesuperiore”,(higherordervortex vii SOMMARIO beams),caratterizzatidaunadistribuzionediintensitápiúcompatta. Nellaterza,infine,esamina lapossibilitádidistingueredueonderadiocondiversoOAMmedianteunaricezioneparzialedel loro campo elettromagnetico. Quest’ultima soluzione, analizzata mediante il formalismo dei sis- temiMIMOedimodelliteoricisullapropagazionedelleondeconOAM,consenteanchedioperare un confrontogenerale fra sistemi multiplexingbasati sulle odiernetecniche MIMO e quellibasati su onde radio con OAM. Lo studio di sistemi a lunga distanza si conclude quindi esaminando le sovrapposizionidicampielettromagneticiconvalorioppostidiOAM.Questeinfatti,essendocarat- terizzatedaunadistribuzionesempliceeregolare,possonocostituireun’interessanteopzioneper semplificare la struttura di sistemi di comunicazione basati su onde con OAM. Infine, nell’ultima parte, la tesi esamina sistemi multiplexing su breve distanza dove i campi elettromagnetici con OAM vengono utilizzati non solo per implementare un multiplexing ma anche per aumentare, direttamentealivellofisico,lasicurezzadellacomunicazione. viii Contents Abstract v Sommario vii Introduzione 1 1 Theoreticalbackground 5 1.1 Historicaloverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Electromagneticwaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 EnergyandLinearMomentum . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 AngularMomentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Angularmomentumcomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 AMofgenericfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.2 AMforparaxialfields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 OAMfieldsexample: LGbeams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.1 Thesingularityconcept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5 GeneralparaxialOAMbeams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.6 OAMbeamsorthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.6.1 Spiralspectrumforscalarparaxialfields . . . . . . . . . . . . . . . . . . . . 17 1.6.2 OAMspectrumforvectorialnonparaxialfields . . . . . . . . . . . . . . . . 18 1.7 OAMbeamsgeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.7.1 Spiralphasemask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.7.2 Drilledphasemask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.7.3 Conformalparabolicantennas . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.7.4 Forkholograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.7.5 Circularantennaarray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 ix CONTENTS 1.7.6 Othermethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.8 OAMwavesandtelecommunications . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.8.1 Experimentalsolutionsfortheopticaldomain . . . . . . . . . . . . . . . . . 26 1.8.2 ExperimentalsolutionsfortheRFdomain . . . . . . . . . . . . . . . . . . . 27 1.8.3 LimitationsofOAMapplicationstotheRFdomain . . . . . . . . . . . . . . 28 1.9 OtherapplicationsofOAMwaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 Conformalparabolicantennas 31 2.1 Cassegrainconformalparabolae . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2 Conformalparabolabehavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3 Prototypesdesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3.1 Numericalsimulationsofprototypesbehavior . . . . . . . . . . . . . . . . . 36 2.4 Generatedfieldsmeasurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5 Characterizationtests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5.1 ReturnLoss(RL)tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5.2 Orthogonalitytests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 AlongrangeOAM-basedlink 43 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 Experimentalsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 Idealexperimentalconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4 Antennasalignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.1 IsolationandinterferencebetweenantennaswithdifferentOAM. . . . . . . 49 3.4.2 Transmissionandreceptionbetweenidenticalantennas . . . . . . . . . . . 50 3.5 Communicationresults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.6 OAMradiochannelsanddigitalmodulations. . . . . . . . . . . . . . . . . . . . . . 51 3.6.1 Singlechannelfull-duplexcommunicationlink . . . . . . . . . . . . . . . . . 51 3.6.2 Doublechannelhalf-duplexcommunicationlink . . . . . . . . . . . . . . . . 52 3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 OAMfieldsconcentration 55 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2 LGbeamsconsecutivesuperpositions . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 Superpositionsradialdivergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Superpositionangulardivergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.5 Fieldphasegradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 x
Description: