Queueing models with admission and termination control : monotonicity and threshold results Citation for published version (APA): Brouns, G. A. J. F. (2003). Queueing models with admission and termination control : monotonicity and threshold results. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR570263 DOI: 10.6100/IR570263 Document status and date: Published: 01/01/2003 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 22. Feb. 2023 Queueing models with admission and termination control Monotonicity and threshold results CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Brouns, Gido A.J.F. Queueing models with admission and termination control | Monotonicity and threshold results / by Gido A.J.F. Brouns. - Eindhoven : Technische Universiteit Eindhoven, 2003. Proefschrift. - ISBN 90-386-0732-6 NUR 919 Keywords: Markov decision processes / dynamic programming / queueing theory 2000 Mathematics Subject Classiflcation: 90C40, 90C39, 60K25, 90B22 Printed by Universiteitsdrukkerij Technische Universiteit Eindhoven Copyright (cid:176)c 2003 by Gido A.J.F. Brouns, The Netherlands All rights reserved Queueing models with admission and termination control Monotonicity and threshold results PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magniflcus, prof.dr. R.A. van Santen, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op donderdag 30 oktober 2003 om 16.00 uur door Gido Antonius Johannes Fransiscus Brouns geboren te Amsterdam Dit proefschrift is goedgekeurd door de promotoren: prof.dr.ir. J. van der Wal en prof.dr. K.M. van Hee \I hope I can make it across the border. I hope to see my friend and shake his hand. I hope the Paciflc is as blue as it has been in my dreams.|||I hope." {Red, The Shawshank Redemption Contents 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Onset of a mathematical model formulation . . . . . . . . . . 3 1.3 Queueing terminology . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Dynamic control of queues . . . . . . . . . . . . . . . . . . . . 8 1.5 Outline of literature on the dynamic control of queues . . . . 10 1.6 Termination control . . . . . . . . . . . . . . . . . . . . . . . 13 1.7 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.8 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 21 2 Two routing control problems 25 2.1 Literature on routing to parallel queues . . . . . . . . . . . . 26 2.2 Model description Model I . . . . . . . . . . . . . . . . . . . . 28 2.3 Main results for Model I . . . . . . . . . . . . . . . . . . . . . 31 2.4 Model description Model II . . . . . . . . . . . . . . . . . . . 42 2.5 Main results for Model II . . . . . . . . . . . . . . . . . . . . 44 2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 vii viii Contents 3 An MjE j1 queue with admission and termination control 51 N 3.1 Model description. . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Overview of the results . . . . . . . . . . . . . . . . . . . . . . 57 3.3 Proof of the Key Proposition . . . . . . . . . . . . . . . . . . 60 3.4 Inflnite time horizon . . . . . . . . . . . . . . . . . . . . . . . 71 3.5 Counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.6 Convex rewards . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4 Extensions of the MjE j1 model 77 N 4.1 Extension to batch Poisson arrivals . . . . . . . . . . . . . . . 78 4.2 Extension to Erlang arrivals . . . . . . . . . . . . . . . . . . . 80 4.3 Extension to Markov feed-forward routing . . . . . . . . . . . 85 4.4 Translation to deterministic decision epochs . . . . . . . . . . 95 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5 A multi-server extension of the MjE j1 model N Computational issues and a near-optimal heuristic 105 5.1 Model description. . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2 Cutting down on the action space . . . . . . . . . . . . . . . . 109 5.3 Properties of the optimal policy . . . . . . . . . . . . . . . . . 112 5.4 Optimal control versus heuristics . . . . . . . . . . . . . . . . 118 5.5 The MjE „ij1 model . . . . . . . . . . . . . . . . . . . . . . . 120 N 5.6 Description of the heuristic . . . . . . . . . . . . . . . . . . . 122 5.7 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.8 Comparison of two heuristics via simulation . . . . . . . . . . 136 5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Contents ix 6 A two-class preemptive priority queue with admission and termination control 143 6.1 Model description. . . . . . . . . . . . . . . . . . . . . . . . . 144 6.2 Overview of the results . . . . . . . . . . . . . . . . . . . . . . 149 6.3 Proof of the Key Proposition . . . . . . . . . . . . . . . . . . 153 6.4 General multi-server model . . . . . . . . . . . . . . . . . . . 161 6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7 Conclusions and outlook 171 7.1 Design and control of work(cid:176)ow processes . . . . . . . . . . . . 171 7.2 Structural results for the dynamic control of queueing systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 References 177 Samenvatting (Summary in Dutch) 183 About the author 187
Description: