Table Of ContentQuaternion-Valued Adaptive Signal Processing and
Its Applications to Adaptive Beamforming and
Wind Profile Prediction
Mengdi Jiang
Supervisors:
Dr. Wei Liu
and
Dr. Yi Li
Thesis submitted in candidature
for graduating with degree of doctor of philosophyAugust 2016
⃝c MengdiJiang2016
Abstract
Quaternion-valuedsignalprocessinghasreceivedmoreandmoreattentionsinthepasttenyears
due to the increasing need to process three or four-dimensional signals, such as colour images,
vector-sensor arrays, three-phase power systems, dual-polarisation based wireless communica-
tion systems, and wind profile prediction. One key operation involved in the derivation of all
kindsofadaptivesignalprocessingalgorithmsisthegradientoperator. Althoughtherearesome
derivationsofthisoperatorinliteraturewithdifferentlevelofdetailsinthequaterniondomain,
it is still not fully clear how this operator can be derived in the most general case and how it
can be applied to various signal processing problems. In this study, we will give a detailed
derivationofthequaternion-valuedgradientoperatorwithassociatedpropertiesandthenapply
it to different areas. In particular, it will be employed to derive the quaternion-valued LMS
(QLMS) algorithm and its sparse versions for adaptive beamforming for vector sensor arrays,
and another one is its application to wind profile prediction in combination with the classic
computationalfluiddynamics(CFD)approach.
For the adaptive beamforming problem for vector sensor arrays, we consider the crossed-
dipole array and the problem of how to reduce the number of sensors involved in the adap-
tive beamforming process, so that reduced system complexity and energy consumption can be
achieved,whereasanacceptableperformancecanstillbemaintained,whichisparticularlyuse-
ful for large array systems. The quaternion-valued steering vector model for crossed-dipole
arrays will be employed, and a reweighted zero attracting (RZA) QLMS algorithm is then pro-
posed by introducing a RZA term to the cost function of the original QLMS algorithm. The
RZA term aims to have a closer approximation to the l norm so that the number of non-zero
0
valuedcoefficientscanbereducedmoreeffectivelyintheadaptivebeamformingprocess.
For wind profile prediction, it can be considered as a signal processing problem and we
can solve it using traditional linear and non-linear prediction techniques, such as the proposed
QLMSalgorithmanditsenhancedfrequency-domainmulti-channelversion. Ontheotherhand,
wind flow analysis is also a classical problem in the CFD field, which employs various simu-
lation methods and models to calculate the speed of wind flow at different time. It is accurate
buttime-consumingwithhighcomputationalcost. Totackletheproblem,acombinedapproach
based on synergies between the statistical signal processing approach and the CFD approach is
proposed. There are different ways of combining the signal processing approach and the CFD
approach to obtain a more effective and efficient method for wind profile prediction. In the
combinedmethod,thesignalprocessingpartemploystheQLMSalgorithm,whilefortheCFD
part,largeeddysimulation(LES)basedontheSmagorinskysubgrid-scale(SGS)modelwillbe
employedsothatmoreefficientwindprofilepredictioncanbeachieved.
2
Contents
ListofFigures 4
ListofTables 6
ListofPublications 8
ListofAbbreviations 10
Acknowledgements 11
1 Introduction 12
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 OriginalContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 AgeneralHRgradientoperatoranditsapplications . . . . . . . . . . . 13
1.2.2 Applicationtoadaptivebeamforming . . . . . . . . . . . . . . . . . . 14
1.2.3 Applicationtowindprofileprediction . . . . . . . . . . . . . . . . . . 15
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Quaternion-valuedAdaptiveSignalProcessing 18
2.1 IntroductiontoQuaternionAlgebra . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 DifferentiationwithRespecttoaVectorinComplexDomain . . . . . . . . . . 20
2.3 Complex-valuedLeastMeanSquareAlgorithm . . . . . . . . . . . . . . . . . 23
2.4 Quaternion-valuedGradientOperatorandtheCorrespondingLMSAlgorithm . 26
2.5 Quaternion-valuedDiscreteFourierTransform . . . . . . . . . . . . . . . . . . 30
1
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3 GeneralQuaternion-valuedGradientOperationandItsApplications 33
3.1 TherestrictedHRgradientoperator . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 TherightrestrictedHRgradientoperator . . . . . . . . . . . . . . . . . . . . . 39
3.3 PropertiesandRulesoftheOperator . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 RestrictedHRDerivativesforaClassofRegularFunctions . . . . . . . . . . . 44
3.5 TheRightRestrictedHRGradients . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Quaternion-valuedAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6.1 Theincrementofaquaternionfunction . . . . . . . . . . . . . . . . . 56
3.6.2 TheQLMSalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6.3 TheAQLMSalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6.4 TheQuaternion-valuednonlinearadaptivealgorithm . . . . . . . . . . 61
3.7 AZero-attractingQLMSAlgorithmforSparseSystemIdentification . . . . . . 65
3.7.1 Thezero-attractingQLMS(ZA-QLMS)algorithm . . . . . . . . . . . 65
3.7.2 Simulationresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4 ApplicationtoAdaptiveBeamforming 72
4.1 IntroductiontoAdaptiveBeamforming . . . . . . . . . . . . . . . . . . . . . . 74
4.1.1 Arraymodelandbeamformingstructure . . . . . . . . . . . . . . . . . 74
4.1.2 LMS-basedRSBbeamformer . . . . . . . . . . . . . . . . . . . . . . 76
4.2 AdaptiveBeamformingBasedonVectorSensorArrays . . . . . . . . . . . . . 78
4.2.1 Quaternionicarraysignalmodel . . . . . . . . . . . . . . . . . . . . . 78
4.2.2 Referencesignalbasedquaternion-valuedadaptivebeamforming . . . . 80
4.3 TheRZA-QLMSAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2
5 ApplicationtoWindProfilePrediction 93
5.1 CorrelationAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.1.1 TheWienersolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.1.2 Correlationswithdifferentsamplingfrequencies . . . . . . . . . . . . 96
5.1.3 Simulationresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Transform-domain Quaternion-valued Adaptive Filtering and Its Application
forWindProfilePrediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.1 ResultsbasedonCFDgenerateddata . . . . . . . . . . . . . . . . . . 106
5.3.2 Resultsbasedonrealdata . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6 CombinedApproachtoWindProfilePrediction 115
6.1 ComputationalFluidDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.1 Thefluiddynamicsequations . . . . . . . . . . . . . . . . . . . . . . 116
6.1.2 Reynoldsnumber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.3 TurbulenceorLaminar . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.1.4 Discretisationmethods . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.1.5 Simulationsmethodsandmodelsforturbulence . . . . . . . . . . . . . 121
6.2 TheCombinedApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.1 Alternating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.2 Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7 ConclusionsandFuturePlan 138
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Bibliography 142
3
List of Figures
2.1 Astandardadaptivefilterstructure. . . . . . . . . . . . . . . . . . . . . . . . 24
3.1 Magnitudeoftheimpulseresponseofthesparsesystem. . . . . . . . . . . . . 69
3.2 Learningcurvesforthefirstscenario. . . . . . . . . . . . . . . . . . . . . . . 70
3.3 LearningCurvesforthesecondscenario. . . . . . . . . . . . . . . . . . . . . 71
4.1 AULAwithMomnidirectionalsensors. . . . . . . . . . . . . . . . . . . . . 74
4.2 Referencesignalbasedbeamformingstructure. . . . . . . . . . . . . . . . . . 77
4.3 AULAwithcrossed-dipoles. . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Referencesignalbasedadaptivebeamforming. . . . . . . . . . . . . . . . . . 80
4.5 Learningcurvesofthethreealgorithms. . . . . . . . . . . . . . . . . . . . . . 87
4.6 Beampatternsofthethreealgorithmswith0◦ desiredsignal. . . . . . . . . . . 88
4.7 Amplitudesofthesteadystateweightcoefficients. . . . . . . . . . . . . . . . 89
4.8 Beampatternofthetwoarrays. . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.9 Beampatternsofthethreealgorithmswith15◦ desiredsignal. . . . . . . . . . 92
5.1 Normalisederrorofwindpredictionatdifferentsampleintervals. . . . . . . . 100
5.2 Normalisederrorofwindpredictionatdifferentfrequencies. . . . . . . . . . . 101
5.3 Generalstructureofamulti-channeladaptivefilter. . . . . . . . . . . . . . . . 102
5.4 Generalstructureofamulti-channelfrequency-domainquaternion-valuedadap-
tivefilter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5 PredictionresultsusingtheQLMSalgorithm. . . . . . . . . . . . . . . . . . . 106
5.6 PredictionresultsusingtheAQLMSalgorithm. . . . . . . . . . . . . . . . . . 107
4
5.7 Thesingle-channeltime-domainpredictionresult. . . . . . . . . . . . . . . . 109
5.8 Thesingle-channeltransform-domainpredictionresult. . . . . . . . . . . . . . 110
5.9 Thesingle-channellearningcurveforthemagnitudeoftheerrorsignal. . . . . 110
5.10 Themulti-channeltime-domainpredictionresult. . . . . . . . . . . . . . . . . 111
5.11 Themulti-channeltransform-domainpredictionresult. . . . . . . . . . . . . . 111
5.12 Themulti-channellearningcurveforthemagnitudeoftheerrorsignal. . . . . 112
5.13 ThelearningcurveforthemagnitudeoftheerrorsignalwithL=16. . . . . . . 112
5.14 ThelearningcurveforthemagnitudeoftheerrorsignalwithL=32. . . . . . . 113
5.15 ThelearningcurveforthemagnitudeoftheerrorsignalwithL=64. . . . . . . 113
6.1 Thealternatingprogress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2 HistogramsfornormalisederrorwiththeQLMSalgorithm. . . . . . . . . . . 132
6.3 HistogramsfornormalisederrorwiththeLESmethod. . . . . . . . . . . . . . 133
6.4 Errorsignalwithcombinedmethodat α =0.3. . . . . . . . . . . . . . . . . . 133
6.5 Errorsignalwithcombinedmethodat α =0.5. . . . . . . . . . . . . . . . . . 134
6.6 Errorsignalwithcombinedmethodat α =0.7. . . . . . . . . . . . . . . . . . 134
6.7 Thespectrumoferrorsignalwithcombinedmethodatα =0.3. . . . . . . . . 135
6.8 Thespectrumoferrorsignalwithcombinedmethodatα =0.5. . . . . . . . . 135
6.9 Thespectrumoferrorsignalwithcombinedmethodatα =0.7. . . . . . . . . 136
5
List of Tables
4.1 Comparisonofcomputationalcomplexity. . . . . . . . . . . . . . . . . . . . . 85
4.2 Comparisonofcomputationalcomplexitywithsensornumbers . . . . . . . . . 90
5.1 Normalised prediction error at sampling frequency f = 5Hz with prediction
s
stepP andnumberofsamplesinvolvedN (PartI). . . . . . . . . . . . . . . . 97
5.2 Normalised prediction error at sampling frequency f = 5Hz with prediction
s
stepP andnumberofsamplesinvolvedN (PartII). . . . . . . . . . . . . . . . 98
5.3 Normalised prediction error at sampling frequency f = 2Hz with prediction
s
stepP andnumberofsamplesinvolvedN (PartI). . . . . . . . . . . . . . . . 98
5.4 Normalised prediction error at sampling frequency f = 2Hz with prediction
s
stepP andnumberofsamplesinvolvedN (PartII). . . . . . . . . . . . . . . . 98
5.5 Normalised prediction error at sampling frequency f = 1Hz with prediction
s
stepP andnumberofsamplesinvolvedN (PartI). . . . . . . . . . . . . . . . 99
5.6 Normalised prediction error at sampling frequency f = 1Hz with prediction
s
stepP andnumberofsamplesinvolvedN (PartII) . . . . . . . . . . . . . . . 99
6.1 Normalisedpredictionerrorfortheproposedalternatingmethodwithprediction
advancevalueP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2 RunningtimewithpredictionadvancevalueP (seconds). . . . . . . . . . . . . 128
6.3 Normalised prediction error in (dB) by data sequence with sampling frequency
f (Hz)andpredictiontimeP (hours)(PartI). . . . . . . . . . . . . . . . . . . 129
s t
6
6.4 Normalised prediction error in (dB) by data sequence with sampling frequency
f (Hz)andpredictiontimeP (hours)(PartII). . . . . . . . . . . . . . . . . . 130
s t
6.5 Normalised prediction error in (dB) by the power of data sequence with sam-
plingfrequencyf (Hz)andpredictiontimeP (hours)(PartI). . . . . . . . . . 130
s t
6.6 Normalised prediction error in (dB) by the power of data sequence with sam-
plingfrequencyf (Hz)andpredictiontimeP (hours)(PartII) . . . . . . . . . 131
s t
7
Description:(QLMS) algorithm and its sparse versions for adaptive beamforming for vector sensor arrays, and another one is its application to wind profile prediction in combination with the classic computational fluid dynamics (CFD) . 5.2 Transform-domain Quaternion-valued Adaptive Filtering and Its Applicatio