QUANTUM THEORY AS AN EMERGENT PHENOMENON TheStatisticalMechanicsofMatrixModels asthePrecursorofQuantumFieldTheory Quantum mechanics is our most successful physical theory. However, it raises conceptual issues that have perplexed physicists and philosophers of science for decades.Thisbookdevelopsanewapproach,basedontheproposalthatquantum theoryisnotacomplete,finaltheory,butisinfactanemergentphenomenonaris- ing from a deeper level of dynamics. The dynamics at this deeper level is taken tobeanextensionofclassicaldynamicstonon-commutingmatrixvariables,with cyclicpermutationinsideatraceusedasthebasiccalculationaltool.Withplausible assumptions, quantum theory is shown to emerge as the statistical thermodynam- ics of this underlying theory, with the canonical commutation–anticommutation relationsderivedfromageneralizedequipartitiontheorem.Brownianmotioncor- rectionstothisthermodynamicsarearguedtoleadtostatevectorreductionandto theprobabilisticinterpretationofquantumtheory,makingcontactwithrecentphe- nomenologicalproposalsforstochasticmodificationstoSchro¨dingerdynamics. STEPHEN L. ADLER received his Ph.D. degree in theoretical physics from Princeton. He has been a Professor in the School of Natural Sciences at the In- stitute for Advanced Study since 1969, and from 1979 to 2003 held the State of NewJerseyAlbertEinsteinProfessorshipthere. Dr.Adler’sresearchhasincludedseminalpapersincurrentalgebras,sumrules, perturbation theory anomalies, and high energy neutrino processes. Dr. Adler has also done important work on neutral current phenomenology, strong field elec- tromagneticprocesses,accelerationmethodsforMonteCarloalgorithms,induced gravity, non-Abelian monopoles, and models for quark confinement. For nearly twentyyearshehasbeenstudyingembeddingsofstandardquantummechanicsin largermathematicalframeworks,withresultsdescribedinthisvolume. Dr.AdlerisamemberoftheNationalAcademyofSciences,andisaFellowof theAmericanPhysicalSociety,theAmericanAcademyofArtsandSciences,and the American Association for the Advancement of Science. He received the J. J. Sakurai Prize in particle phenomenology, awarded by the American Physical So- ciety,in1988,andtheDiracPrizeandMedalawardedbytheInternationalCenter forTheoreticalPhysicsinTrieste,in1998. QUANTUM THEORY AS AN EMERGENT PHENOMENON The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory STEPHEN L. ADLER InstituteforAdvancedStudy,Princeton Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge , UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521831949 © S. L. Adler 2004 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2004 - ---- eBook (NetLibrary) - --- eBook (NetLibrary) - ---- hardback - --- hardback Cambridge University Press has no responsibility for the persistence or accuracy of s for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. ToSarahBrett-Smith,withloveandadmiration Contents Acknowledgements pagex Introductionandoverview 1 1 Thequantummeasurementproblem 2 2 Reinterpretationsofquantummechanicalfoundations 6 3 Motivationsforbelievingthatquantummechanics isincomplete 9 4 Anoverviewofthisbook 13 5 Briefhistoricalremarksontracedynamics 18 1 Tracedynamics:theclassicalLagrangianandHamiltonian dynamicsofmatrixmodels 21 1.1 Bosonicandfermionicmatricesandthecyclic traceidentities 21 1.2 Derivativeofatracewithrespecttoanoperator 24 1.3 LagrangianandHamiltoniandynamicsofmatrixmodels 27 1.4 ThegeneralizedPoissonbracket,itsproperties, andapplications 29 1.5 TracedynamicscontrastedwithunitaryHeisenberg picturedynamics 32 2 Additionalgenericconservedquantities 39 2.1 Thetrace“fermionnumber”N 39 ˜ 2.2 TheconservedoperatorC 42 2.3 Conservedquantitiesforcontinuumspacetimetheories 52 2.4 Anillustrativeexample:aDiracfermioncoupled toascalarKlein–Gordonfield 58 2.5 Symmetriesofconservedquantitiesunder p ↔q 62 F F 3 Tracedynamicsmodelswithglobalsupersymmetry 64 3.1 TheWess–Zuminomodel 64 3.2 ThesupersymmetricYang–Millsmodel 67 vii viii Contents 3.3 ThematrixmodelforMtheory 70 3.4 Superspaceconsiderationsandremarks 72 4 Statisticalmechanicsofmatrixmodels 75 4.1 TheLiouvilletheorem 76 4.2 Thecanonicalensemble 81 4.3 Themicrocanonicalensemble 88 4.4 Gaugefixinginthepartitionfunction 93 4.5 ReductionoftheHilbertspacemoduloi 100 eff 4.6 Globalunitaryfixing 106 5 Theemergenceofquantumfielddynamics 117 5.1 ThegeneralWardidentity 119 5.2 Variationofthesourceterms 124 5.3 Approximations/assumptionsleadingtotheemergence ofquantumtheory 128 5.4 Restrictionsontheunderlyingtheoryimpliedbyfurther Wardidentities 139 5.5 DerivationoftheSchro¨dingerequation 147 5.6 EvasionoftheKochen–SpeckertheoremandBell inequalityarguments 151 6 BrownianmotioncorrectionstoSchro¨dingerdynamicsandthe emergenceoftheprobabilityinterpretation 156 6.1 Scenariosleadingtothelocalizationandtheenergy-driven stochasticSchro¨dingerequations 157 6.2 ProofofreductionwithBornruleprobabilities 170 6.3 Phenomenologyofstochasticreduction–reduction rateformulas 174 6.4 Phenomenologyofenergy-drivenreduction 175 6.5 Phenomenologyofreductionbycontinuousspontaneous localization 185 7 Discussionandoutlook 190 Appendices 193 AppendixA:Modificationsinrealandquaternionic Hilbertspace 194 AppendixB:AlgebraicproofoftheJacobiidentityforthe generalizedPoissonbracket 194 AppendixC:Symplecticstructuresintracedynamics 198 AppendixD:Gammamatrixidentitiesforsupersymmetric tracedynamicsmodels 201 AppendixE:Tracedynamicsmodelswithoperator gaugeinvariance 204 Contents ix AppendixF:PropertiesofWightmanfunctionsneededfor reconstructionoflocalquantumfieldtheory 206 AppendixG:BRSTinvariancetransformationforglobal unitaryfixing 208 References 212 Index 220
Description: