ebook img

Quantum Phenomena in Clusters and Nanostructures PDF

276 Pages·2003·9.744 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Phenomena in Clusters and Nanostructures

Springer Series in CLUSTER PHYSICS Springer-Verlag Berlin Heidelberg GmbH ONLINE LlBRARY Physics and Astronomy http://www.springer.de/phys/ Springer Series in CLUSTER PHYSICS Se ries Editors: A. W. Castleman, Jr. R. S. Berry H. Haberland J. Jortner T. Kondow The intent of the Springer Series in Cluster Physics is to provide systematic infor mation on developments in this rapidly expanding field of physics. In comprehen sive books prepared by leading scholars, the current state-of-the-art in theory and experiment in cluster physics is presented. Mesoscopic Materials and Clusters Their Physical and Chemical Properties Editors: T. Arai, K. Mihama, K. Yamamoto and S. Sugano Cluster Beam Synthesis ofNanostructured Materials By P. Milani and S. Iannotta Theory of Atomic and Molecular Clusters With a Glimpse at Experiments Editor: J. Jellinek Metal Clusters at Surfaces Structure, Quantum Properties, Physical Chemistry Editor: K.-H. Meiwes-Broer Clusters and Nanomaterials Theory and Experiment Editors: Y. Kawazoe, T. Kondow and K. Ohno Quantum Phenomena in Clusters and Nanostructures By S.N. Khanna and A.W. Castleman, Jr. Water in Confining Geometries By V. Buch and J.P. Devlin Series homepage - hup:// www.springer.de/phys/books/cluster-physics/ S.N. Khanna A.W. Castleman, Jr. Quantum Phenomena in Clusters and Nanostruetures With 115 Figures and 8 Tables Springer Prof. S.N. Khanna Department of Physies, Virginia Commonwealth University Riehmond, VA 23284-2000, USA [email protected] Prof. A.W. Castleman, Jr. Eberly Distinguished Chair in Scienee Evan Pugh Professor, Department of Chemistry and Physies 152 Davey Laboratory, The Pennsylvania State Univesity University Park, PA 16802, USA [email protected] ISSN 1437-0395 ISBN 978-3-642-05503-4 ISBN 978-3-662-02606-9 (eBook) DOI 10.1007/978-3-662-02606-9 Library of Congress Cataloging-in-Publication Data Khanna, S. N. Quantum phenomena in clusters and nanostruetures / S.N. Khanna, A.W. Castleman, jr. p. em. --(Springer series in cluster physies, ISSN 1437-0395) 1. Nanostruetures. 2. Quantum theory. I. Castleman, Y. W. (Albert Welford), 1936-11. Title. III. Series. QC176.8.N35 K43 2003 530.12--de2l 2002034365 This work is subjeet to copyright. All rights are reserved, whether the whole or part of the material is eoneerned, speeifieally the rights of translation, reprinting, reuse of illustrations, recitation, broadeasting, reproduetion on mierofilm or in any other way, and storage in data banks. Duplieation of this publieation or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965, in its eurrent version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for proseeution under the German Copyright Law. http://www.springer.de © Springer-Verlag Berlin Heidelberg 2003 Originally published by Springer-Verlag Berlin Heidelberg New York in 2003. Softcover reprint of the hardcover 1s t edition 2003 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig Cover eoncept: eStudio Calamar Steinen Cover production: design & production GmbH, Heidelberg Printed on acid-free paper 57/3141/YL -5 43210 Preface One of the greatest triumphs of the last century was the development of quantum mechanics. The sharp lines and their position in the atomic spectra were the prime motivation that led to the Bohr model of the hydrogen atom, with the development of the Schrödinger equation ultimately providing the framework for understanding the properties of matter at the molecular level. In the experimental arena, technical developments over the past thirty years have enabled researchers to devise methods to fabricate structures that are so small that the energy levels of the systems present a discrete energy spectrum where the stability and the reactivity are determined by the nature of these electronic levels and the degree to which they are filled. In these miniature solids, clusters in some cases or assemblies that constitute nanoscale materials in others, the properties are controlled by the discrete quantum conditions associated with reduced size. Consequently, they are ideal systems for observ ing quantum effects. Indeed, numerous novel phenomena, e.g., magie numbers in the mass spectra, macroscopic quantum tunneling of magnetization, and quantum corrals, have provided novel examples for observing quantum effects at the nanoscopic scale. Of equal importance are the developments in experi mental techniques that are now enabling researchers to unravel the quantum evolution by probing the excitation/relaxation dynamics of electronic states in real time. Theoretical techniques have developed to the extent of not only providing a fundamental understanding of the properties of nanoscale systems, but also having predictive capability. These unprecedented devel opments are going to guide scientific thinking and material designs well into the next century. The field of clusters and nano-scale materials is itself a rapidly developing area of research for other reasons. This is due in part to developments in experimental techniques ranging from supersonic molecular beams, sol-gel formation, sputtering, ball milling, to ones used for the formation of micelles and polymers. Indeed, it has been possible to generate free and embedded clusters of controlled size and composition, nanoscale particles containing up to several million atoms, nanocomposites, and nanocrystalline materials. The enormous interest in these systems stems from the fact that they display a totally new class of physical, chemieal, electronic, magnetic and catalytic properties attributable to the reduced size and related aspects of quantum VI Preface confinement. Further, the properties change with size and composition. One can thus understand how the quantum character evolves from atoms to the bulk solids. These types of behavior offer not only challenges for their funda mental understanding, but also avenues for new technologies. For example, it is envisioned that small clusters/nano-structures could serve as the building blocks of a new class of cluster assemblies. Three examples are the fullerides made from fullerenes, cluster-assembled solids made from Met-Cars, and nanostructures made from quantum dots. In this volume, we have collected a diverse set of topics to highlight the influence of quantum constraints at reduced sizes. It is difficult to cover all aspects in a single volume but we hope that the reader will find the limited material interesting and stimulating. Richmond, VA; University Park, PA B.N. Khanna August 2002 A. W. Castleman Contents 1 Cluster and Nanoscale Science: Overview and Perspective A.W. Castleman, Jr., S.N. Khanna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction............................................... 1 1.2 Cluster Types: Formation and Study. . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Theoretical Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Theme of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Quantum and Classical Size Effects in Thermodynamic Properties R.S. Berry ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Introduction............................................... 7 2.2 Quantum Properties of Small Systems ........................ 10 2.3 Phases of Finite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 2.4 Phase Diagrams of Finite Systems. . . . . . . . . . . . . . . . . . . . . . . . . . .. 19 2.5 Conclusion................................................ 26 References ..................................................... 26 3 Photoelectron Spectroscopy G. Ganteför . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29 3.1 Introduction............................................... 29 3.2 Physics of Photoelectron Spectroscopy . . . . . . . . . . . . . . . . . . . . . . .. 31 3.3 Experimental Set Up ....................................... 36 3.3.1 Cluster Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 37 3.3.2 Time-of-Flight Mass Spectrometer . . . . . . . . . . . . . . . . . . . . .. 37 3.3.3 Laser............................................... 37 3.3.4 Photoelectron Spectrometer ........................... 38 3.4 Results.................................................... 39 3.4.1 Example: Electronic Shells in Clusters of Simple Metals . .. 39 3.4.2 Example: The Size Dependence of the Band Gap . . . . . . . .. 42 3.4.3 Example: Chemical reactivity and electronic structure. . . .. 45 3.4.4 Example: Dynamics .................................. 48 3.5 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51 VIII Contents 4 Quantulll Tunneling of the Magnetization in Molecular Nanoclusters R. Sessoli, D. Gatteschi, W. Wernsdorfer. . . . . . . . . . . . . . . . . . . . . . . . . .. 55 4.1 Introduction............................................... 55 4.2 The Magnetic Anisotropy of Molecular Clusters. . . . . . . . . . . . . . .. 57 4.3 The Superparamagnetic Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 61 4.4 Longitudinal Field Dependence of the Relaxation Rate: The Stepped Hysteresis ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 63 4.5 Transverse Field Dependence of the Relaxation Rate: The Berry Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65 4.6 The Role of Dipolar Fields: The Non-Exponential Relaxation. . .. 69 4.7 The Role of the Nuclear Magnetic Moments: The Isotope Effect .. 74 4.8 Conclusions................................................ 78 References ..................................................... 79 5 Magnetislll of Free and Supported Metal Clusters J .P. Bucher .................................................... 83 5.1 Introduction............................................... 84 5.2 Simple Considerations ...................................... 86 5.2.1 Common Ideas on Magnetism. . . . . . . . . . . . . . . . . . . . . . . . .. 86 5.2.2 Implications for Cluster Magnetism . . . . . . . . . . . . . . . . . . . .. 87 5.3 The Stern-Gerlach Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 89 5.3.1 Experimental Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 89 5.3.2 Magnetic Moment Measurements of Unsupported Clusters. 91 5.3.3 A High Resolution Experiment: Nickel. . . . . . . . . . . . . . . . .. 92 5.3.4 Temperature Dependence of the Giant Moments. . . . . . . . .. 93 5.3.5 Clusters of Non-Ferromagnetic Transition Metals . . . . . . . .. 96 5.3.6 Locked Moment Clusters and Spin Canting . . . . . . . . . . . . .. 97 5.4 Interpretation of the Beam Experiments. . . . . . . . . . . . . . . . . . . . . .. 99 5.4.1 Magnetic Anisotropy .................................. 100 5.4.2 Coupling Between Magnetic Moment and Lattice: Deflection Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.5 Growth Kinetics of Clusters on Surfaces ....................... 102 5.5.1 Tuning the Clusters Density ........................... 102 5.5.2 Island Shapes ........................................ 104 5.6 Thermodynamic Growth Modes .............................. 106 5.6.1 Growth Criteria ...................................... 106 5.6.2 Elastic and Structural Considerations ................... 107 5.7 Organized Growth .......................................... 108 5.7.1 Incommensurate Modulated Layers ..................... 108 5.7.2 Atomic Scale Template ................................ 110 5.7.3 Self Organization ..................................... 112 5.7.4 Periodic Patterning by Stress Relaxation ................ 113 Contents IX 5.7.5 Organization on Vieinal Surfaees ....................... 115 5.7.6 Low Temperature Growth ............................. 115 5.8 Magnetie Properties of Nanostruetures ........................ 116 5.8.1 Isolated Clusters on Surfaces ........................... 117 5.8.2 Interaeting Islands and Chains ......................... 120 5.8.3 The Two-Dimensional Limit ........................... 125 5.9 Conclusion and Outlook ..................................... 130 Referenees ..................................................... 132 6 Magnetism in Free Clusters and in Mn12012-Acetate Nanomagnets S.N. Khanna, C. Ashman, M.R. Pederson, J. Kortus 139 6.1 Introduction ............................................... 139 6.2 Magnetie Moment of Free Clusters in Beams ................... 140 6.3 Oseillatory Change in the Magnetie Moment of Ni Clusters upon H Adsorption ........................... 143 n 6.4 Quantum Tunneling and Atomie, Eleetronie and Magnetie Structure of Mn12012-Aeetate ................... 146 6.5 Details of Theoretical Studies ................................ 149 6.6 Geometry and Electronie Strueture of Isolated Mn12012 Clusters. 150 6.6.1 Vibrational Frequencies of the Hexagonal Tower .......... 151 6.7 Electronie Structure of Mn12012-Aeetate ...................... 152 6.8 Magnetie Anisotropy Energy ................................. 154 6.9 Conclusions and Extension to Fe8 Nanomagnets ................ 156 Referenees ..................................................... 157 7 Size Effects in Catalysis by Supported Metal Clusters A.A. Kolmakov, D.W. Goodman .................................. 159 7.1 Introduetion ............................................... 159 7.2 Methodology ............................................... 160 7.2.1 Thin Oxide Films as a Model Support .................. 160 7.2.2 Cluster Deposition: Density, Size and Control of Morphology ....................................... 161 7.2.3 Analytieal Tools: Speetroseopy and Mieroseopy ........... 164 7.3 Cluster Size and Reaetivity .................................. 170 7.3.1 Geometrie Factors .................................... 170 7.3.2 Eleetronie Faetors .................................... 174 7.4 Examples of Size Effects in Cluster Reactivity .................. 181 7.4.1 Onset of the Reaetivity of Au/Ti02 with Metal-Nonmetal Transitions and the Dimensionality of Supported Clusters ............ 181 7.4.2 CO Dissoeiation on Struetural Defects of Rh/ Alz03/NiAI (110) .............................. 186 7.4.3 CO Oxidation Over a Pt/MgO Monodispersed Catalyst ... 189 X Contents 7.5 Concluding Remarks and Future Prospects .................... 192 References ..................................................... 193 8 Delayed Ionization E.E.B. Campbell, R.D. Levine .................................... 199 8.1 Introduction ............................................... 199 8.2 Transition State Theory ..................................... 200 8.3 Detailed Balance ........................................... 203 8.4 Experimental: The Rate of Thermionic Emission ............... 210 8.5 Experimental: Dynamics .................................... 213 8.6 Kinetic Model ............................................. 217 8.7 Concluding Remarks ........................................ 219 9 Cluster Dynamies: Influences of Solvation and Aggregation Q. Zhong, A.W. Castleman, Jr .................................... 223 9.1 Introduction ............................................... 223 9.2 Charge-Transfer Reactions ................................... 224 9.2.1 Photo-Induced Electron-Transfer Reactions .............. 224 9.2.2 Excited-State Proton-Transfer ......................... 226 9.2.3 Excited-State Double Proton-Transfer ................... 229 9.3 Caging Dynamics ........................................... 231 9.3.1 Caging Dynamics in Neutral Clusters ................... 232 9.3.2 Caging Dynamics in Anionic Clusters ................... 234 9.4 Coulomb Explosion Process in Clusters ....................... 238 9.4.1 Role of Clusters in the Coulomb Explosion Process ....... 238 9.4.2 Modeling of Coulomb Explosion Process ................. 240 9.4.3 Coulomb Explosion Imaging ........................... 243 9.5 Electronic Excitation, Relaxation and Ionization of Met-Cars .... 245 9.5.1 Met-Cars: A Unique Molecular Cluster System ........... 246 9.5.2 Delayed Ionization .................................... 246 9.5.3 Ultrafast Spectroscopy ................................ 248 9.6 Conclusion ................................................ 251 References ..................................................... 252 10 Future Directions A.W. Castleman, Jr., S.N. Khanna ................................ 259 Index ......................................................... 263

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.