Quantum phase gate for optical qubits with cavity quantum optomechanics MuhammadAsjad,PaoloTombesi,andDavidVitali∗ SchoolofScienceandTechnology,PhysicsDivision,UniversityofCamerino,62032Camerino (MC),Italy 5 ∗[email protected] 1 0 2 Abstract: We show that a cavity optomechanical system formed by a r mechanical resonator simultaneously coupled to two modes of an optical a M cavitycanbeusedfortheimplementationofadeterministicquantumphase gatebetweenopticalqubitsassociatedwiththetwointracavitymodes.The 7 scheme is realizable for sufficiently strong single-photon optomechanical 1 couplingintheresolvedsidebandregime,andisrobustagainstcavitylosses. ] © 2015 OpticalSocietyofAmerica h p OCIS codes: (270.5585) Quantum information and processing; (190.3270) Kerr effect; - (270.0270)QuantumOptics. t n a u Referencesandlinks q 1. M.H.DevoretandR.J.Schoelkopf,“Superconductingcircuitsforquantuminformation:Anoutlook,”Science [ 339,1169–1174(2013). 2. M.A.Nielsen,andI.L.ChuangQuantumComputationandQuantumInformation(Springer,2000). 3 3. D.Vitali,M.Fortunato,P.Tombesi,“CompletequantumteleportationwithaKerrnonlinearity,”Phys.Rev.Lett. v 85,445–448(2000). 8 4. D.Bouwmeester,J.-W.Pan,K.Mattle,M.Eibl,H.Weinfurter,A.Zeilinger,“Experimentalquantumteleporta- 2 tion,”Nature390,575–578(1997). 0 5. S.Lloyd,“Almostanyquantumlogicgateisuniversal,”Phys.Rev.Lett.75,346–349(1995). 4 6. Q.A.Turchette,C.J.Hood,W.Lange,H.Mabuchi,H.J.Kimble,“Measurementofconditionalphaseshiftsfor 0 quantumlogic,”Phys.Rev.Lett.75,4710–4713(1995) . 7. E.Knill,R.Laflamme,G.J.Milburn,“Aschemeforefficientquantumcomputationwithlinearoptics,”Nature 1 409,46–52(2001) 0 8. E.Arimondo,“Coherentpopulationtrappinginlaserspectroscopy,”ProgressinOptics,XXXV,257–354(1996). 5 9. S.E.Harris,“Electromagneticallyinducedtransparency,”Phys.Today50(7),36–42(1997). 1 10. L.V.Hau, S.E.Harris, Z.Dutton, and C.H. Behroozi, “Light speed reduction to 17metres per second in an : v ultracoldatomicgas,”Nature397,594–598(1999). i 11. M.D.Lukin,andA.Imamog˘lu,“Nonlinearopticsandquantumentanglementofultraslowsinglephotons,”Phys. X Rev.Lett.84,1419–1422(2000). 12. M.D.Lukin,andA.Imamog˘lu,“Controllingphotonsusingelectromagnetically inducedtransparency,”Nature r a 413,273–276(2001). 13. C.Ottaviani,S.Rebic,D.Vitali,andP.Tombesi,“Quantumphase-gateoperationbasedonnonlinearoptics:Full quantumanalysis,”Phys.Rev.A73,010301(R)(2006). 14. C.Ottaviani,S.Rebic,D.Vitali,andP.Tombesi,“Crossphasemodulationinafive-levelatomicmedium:semi- classicaltheory,”Eur.Phys.J.D40,281–296(2006). 15. S.Rebic,C.Ottaviani,G.DiGiuseppe,D.Vitali,andP.Tombesi,“Assessmentofaquantumphasegateoperation basedonnonlinearoptics,”PhysRevA74,032301(2006). 16. A.V.Gorshkov,J.Otterbach,M.Fleischhauer,T.Pohl,andM.D.Lukin,“Photon-photoninteractionsviaRyd- bergblockade,”Phys.Rev.Lett.107,133602(2011). 17. D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically induced transparency with Rydberg atoms,”Phys.Rev.Lett.107,213601(2011). 18. T.Peyronel, O.Firstenberg, Q.Liang,S.Hofferberth, A.V.Gorshkov,T.Pohl,M.D.Lukin,andV.Vuletic, “Quantumnonlinearopticswithsinglephotonsenabledbystronglyinteractingatoms,”Nature488,57-60(2012). 19. V.Parigi,E.Bimbard,J.Stanojevic,A.J.Hilliard,F.Nogrette,R.Tualle-Brouri,A.Ourjoumtsev,andP.Grangier, “Observationandmeasurementofinteraction-induced dispersiveopticalnonlinearities inanensembleofcold Rydbergatoms,”Phys.Rev.Lett.109,233602(2012). 20. O.Firstenberg, T.Peyronel,Q.Liang,A.V.Gorshkov,M.D.Lukin,andV.Vuletic, “Attractive photonsina quantumnonlinearmedium,”Nature502,71–75(2013). 21. B.He,A.V.Sharypov,J.Sheng,C.Simon,andM.Xiao,“Two-photondynamicsincoherentRydbergatomic ensemble,”Phys.Rev.Lett.112,133606(2014). 22. J.Volz,M.Scheucher,C.Junge,andA.Rauschenbeutel,“Nonlinearp phaseshiftforsinglefibre-guidedphotons interactingwithasingleresonator-enhancedatom,”Nat.Photonics.8,965–970(2014). 23. G.S.AgarwalandS.Huang,“Electromagnetically inducedtransparencyinmechanicaleffectsoflight,”Phys. Rev.A81,041803(2010). 24. S.Weis,R.Rivie`re,S.Dele´glise,E.Gavartin,O.Arcizet,A.Schliesser,andT.J.Kippenberg,“Optomechanically InducedTransparency,”Science,330,1520–1523(2010). 25. J.D.Teufel,D.Li,M.S.Allman,K.Cicak,A.J.Sirois,J.D.Whittaker,andR.W.Simmonds,“Circuitcavity electromechanicsinthestrong-couplingregime,”Nature471,204–208(2011). 26. A.H.Safavi-Naeini, T.P.M.Alegre,J.Chan,M.Eichenfield,M.Winger,Q.Lin,J.T.Hill,D.E.Chang,and OPainter,“Electromagnetically inducedtransparencyandslowlightwithoptomechanics,”Nature472,69–73 (2011). 27. M.Karuza,C.Biancofiore,M.Bawaj,C.Molinelli,M.Galassi,R.Natali,P.Tombesi,G.DiGiuseppe,andD. Vitali,“Optomechanicallyinducedtransparencyinamembrane-in-the-middlesetupatroomtemperature,”Phys. Rev.A88,013804(2013). 28. K.Hammerer,C.Genes,D.Vitali, P.Tombesi,G.J.Milburn,C.Simon,andD.Bouwmeester, “Nonclassical statesoflightandmechanics”,in“CavityOptomechanics:Nano-andMicromechanicalResonatorsInteracting withLight,”(SpringerBerlinHeidelberg),editedbyM.Aspelmeyer,T.J.Kippenberg,F.Marquardt,pag.25–56, (2014). 29. S. Mancini, and P. Tombesi “Quantum noise reduction by radiation pressure,” Phys. Rev. A 49, 4055–4065 (1994). 30. C.Fabre,M.Pinard,S.Bourzeix,A.Heidmann,E.GiacobinoandS.Reynaud,“Quantum-noisereductionusing acavitywithamovablemirror,”Phys.Rev.A49,1337–1343(1994). 31. D.W.C.Brooks,T.Botter,S.Schreppler,T.P.Purdy,N.Brahms,andD.M.Stamper-Kurn,“Non-classicallight generatedbyquantumnoisedrivencavityoptomechanics,”Nature,448,476–480(2012). 32. A.H.Safavi-Naeini,S.Gro¨blacher,J.T.Hill,J.Chan,M.Aspelmeyer,O,Painter“Squeezedlightfromasilicon micromechanicalresonator,”Nature500,185–189(2013). 33. T.P.Purdy,P-L.Yu,R.W.Peterson,N.S.Kampel,andC.A.Regal“Strongoptomechanicalsqueezingoflight,” Phys.Rev.X3,031012(2013). 34. M.Ludwig,A.H.Safavi-Naeini,O.Painter,andF.Marquardt,“Enhancedquantumnonlinearitiesinatwo-mode optomechanicalsystem,”Phys.Ref.Lett.109,063601(2012). 35. K.Stannigel,P.Komar,S.J.M.Habraken,S.D.Bennett,M.D.Lukin,P.Zoller,andP.Rabl,“Optomechanical quantuminformationprocessingwithphotonsandphonons,”Phys.Rev.Lett.109,013603(2012). 36. W.-Z.Zhang,J.Cheng,andL.Zhou,“Quantumcontrolgateincavityoptomechanicalsystem,”J.Phys.B48, 015502(2015). 37. C.Baker,W.Hease,D.-T.Nguyen,A.Andronico,S.Ducci,G.Leo,andI.Favero,“Photoelastic couplingin galliumarsenideoptomechanicaldiskresonators,”Opt.Express22,14072–14086(2014) 38. K.C.Balram,M.Davanc¸o,J.Y.Lim,J.D.Song,andK.Srinivasan,“Movingboundaryandphotoelasticcoupling inGaAsoptomechanicalresonators,”Optica,1,414–420(2014). 39. S.M.Meenehan,J.D.Cohen,S.Gro¨blacher, J.T.Hill,A.H.Safavi-Naeini, M.Aspelmeyer,andO.Painter, “Siliconoptomechanicalcrystalresonatoratmillikelvintemperatures,”Phys.Rev.A90,011803(R)(2014). 40. D.J.Wilson,V.Sudhir,N.Piro,R.Schilling,A.Ghadimi,andT.J.Kippenberg,“Measurementandcontrolofa mechanicaloscillatoratitsthermaldecoherencerate,”arXiv:1410.6191[quant-ph]. 41. J.F.Poyatos,J.I.Cirac,andP.Zoller,“Completecharacterization ofaquantumprocess:Thetwo-bitquantum gate,”Phys.Rev.Lett.78,390-393(1997). 42. D.F.Walls,andG.J.MilburnQuantumOptics(Springer,Berlin1994). 1. Introduction Simple quantum information protocols and quantum gates have been recently implemented withhighfidelityintrappedionsandincircuitcavityQED(seee.g.,Ref.[1]forareview).In an efficientquantumnetwork,the informationelaboratedbya solid state processorat a node shouldbethenrobustlyencodedinsingle-photonqubitsforlong-distancecommunicationand distributionofquantuminformation.Thepossibilitytoimplementhigh-fidelitytwo-qubitgates betweensingle-photonswouldgreatlyfacilitatesuchquantuminformationrouting;anexample is provided by perfect Bell-state discrimination for quantum teleportation and entanglement swapping [2], which could be implementeddeterministically if a quantumphase gate (QPG) betweensinglephotonqubitswouldbeavailable[3].ItiswellknownthattoobtainsuchaQPG one needsnonlinearitiesimplicit in post-processingmeasurementsor a nonlinearsystem [4]. A particularlyconvenientQPG is obtainedwhenthe conditionalphase shiftbetween the two photonic qubit is equal to p , because in this latter case the QPG is equivalent, up to local unitarytransformations,to a C-NOTgate[2,5].Using all-opticalsolutionsthisisnoteasy to achievebecausetoprocesstheinformationoneneedsstrongphoton-photoninteraction.Infact, to implement quantum information with photons, a nonlinear interaction is needed either to buildatwo-photongateoperation[6](butthecommonlyachievablec 3 susceptibilityfactoris typicallytoosmall),orthenonlinearityimplicitatthedetectionstageinlinearopticsquantum computation[7]. Then, one has to think differentlyas for example using electromagneticallyinducedtrans- parency (EIT) [8,9]. Indeed the possibility of reducing the speed of light in atomic media with L -type levels was proposed and experimentally obtained [10]. Although the two weak fields wave functionstravelingwith slow groupvelocitycan have a veryhigh nonlinearcou- pling when they propagate in an atomic media with L -like level configurations [11,12], we need, however,to obtainthe same result atthe single photonleveland thisis extremelyhard to achieveor evenimpossible with L -likeconfigurations.A fullquantumanalysishasshown thatalargenonlinearcross-phaseshiftisachievableusinganatomicMlevelstructure[13–15], but it was also shown that a trade-offbetween the size of the conditionalphase shift and the fidelityofthegateexists.Thiscanbeavoidedinthetransientregime,whichishoweverexper- imentallychallenging.Morerecently,importantresultshavebeenachievedbyexploitingtwo differentsolutionsabletoprovidetherequiredeffectivenonlinearities:i)thestrongdispersive couplingof lightto stronglyinteractingatomsin highlyexcitedRydbergstates [16–21];ii) a fiber-integratedcavity QED system employing a whispering gallery mode resonator strongly coupledtoasingleRubidiumatom[22]. Nevertheless, in recent years it has been proposed [23], and then experimentally real- ized [24–27], that EIT-like effects could be obtained also within cavity optomechanical sys- tems. Furthermore,it is well knownthat the ponderomotiveaction of light, togetherwith the backactionofthemechanicaloscillatorinteractingwithit,isresponsibleforaneffectiveoptical Kerrnonlinearity[28],whichinturn,maygiverisetointerestingquantumphenomena,suchas squeezingofthecavityoutputlight,aspredictedacoupleofdecadesago[29,30]andrecently experimentallyachieved[31–33]. Inthispaperwe willshowthataQPG forsimplephotonicqubitswith aconditionalphase shift equalto p is achievableby employinga cavity optomechanicalsystem with sufficiently large single-photon optomechanical coupling, and relatively high mechanical Q-factor Q . m Refs. [34,35] first suggested that multi-mode optomechanical systems in the single-photon strong couplingregime could be exploitedfor quantuminformationprocessing with photons and phonons, and a first example of optomechanicalimplementation of a QPG has been re- centlyprovidedinRef.[36].Herewefurtherdeveloptheseideas,byproposingamuchsimpler scheme,which requiresthe controlofonlytwo cavity modesandof a single mechanicalres- onator, rather than four optical cavity modes and two mechanical resonators as in Ref. [36]. Recent progressin the realization of strongly couplednano-optomechanicalsystems [37–39] suggeststhattheQPGschemeproposedherecouldbeimplementedinthenearfuture. 2. TheModel We consideran optomechanicalsystem consistingof a mechanicalresonatorinteractingwith twoopticalmodes,whichisdescribedbythefollowingHamiltonian Hˆ =h¯w aˆ†aˆ +h¯w aˆ†aˆ +h¯w bˆ†bˆ+h¯ g aˆ†aˆ +g aˆ†aˆ bˆ+bˆ† , (1) 1 1 1 2 2 2 m 1 1 1 2 2 2 (cid:16) (cid:17)(cid:0) (cid:1) where, aˆ(bˆ) and aˆ†(bˆ†) are the annihilation and creation operators for the optical cav- i i ity (mechanical) modes, with frequency w /2p and w /2p respectively, and with [aˆ,aˆ†]= i m i i [bˆ,bˆ†] = 1; g = (dw /dx)x is the i-th single-photon optomechanical coupling rate, with i i zpf x = h¯/2mw thespatialsizeofthezero-pointfluctuationofthemechanicaloscillator. zpf m We focusonthesimplestchoiceforanopticalqubit,thestatespacespannedbythelowest p Fockstatesofanopticalmode,|0iand|1i;tobemorespecificwewanttoimplementaQPG between the optical qubits associated with two optical cavity modes of the optomechanical systemunderstudy.Thegenericinitial(pure)stateofthetwoopticalqubitsisgivenby |y i =a |0i |0i +a |0i |1i +a |1i |0i +a |1i |1i , (2) in 00 1 2 01 1 2 10 1 2 11 1 2 corresponding in general to an entangled state of the two modes with up to two photons. A simple proof-of-principledemonstration could be achieved by restricting to factorized input statesofthetwocavitymodes,whichcouldbeprovidedbytwoweaklaserpulsesdrivingthe two selected cavitymodesatfrequenciesw and w , similar to the preliminaryexperimen- L1 L2 tal demonstrationof a QPG givenin Ref. [6]. In thiscase the two cavity modesare prepared in a product of two coherent states with amplitudes a and a , |y (0)i=|a i |a i ≃ d1 d2 d1 1 d2 2 [|0i +a |1i ][|0i +a |1i ], where the latter expression is valid for |a |,|a |≪1. For 1 d1 1 2 d2 2 d1 d2 inputlaserpowersP,cavitydetuningsD =w −w ,anddecayratesk , j=1,2,theampli- j j j Lj j tudesaregivenbya = 2Pk / h¯w k 2+D 2 . dj j j Lj j j r It is convenient to move to a frahme ro(cid:16)tating at(cid:17)thie corresponding driving laser frequency for each cavity mode, providing therefore the phase reference for each optical qubit; this is equivalenttomovetotheinteractionpicturewithrespecttothefreeopticalHamiltonianH = 0 h¯w aˆ†aˆ +h¯w aˆ†aˆ ,inwhichthesystemHamiltonianbecomes L1 1 1 L2 2 2 Hˆ =h¯D nˆ +h¯D nˆ +h¯w bˆ†bˆ+h¯w fˆ bˆ+bˆ† , (3) 1 1 2 2 m m nˆ wherewehaveusedthecavitymodephotonnumberoperato(cid:0)rsnˆ =(cid:1)aˆ†aˆ ,andwehavedefined j j j fˆ =[g nˆ +g nˆ ]/w . nˆ 1 1 2 2 m 3. Hamiltoniandynamics Inordertohaveaphysicaldescriptionofhowtheeffectiveopticalnonlinearityprovidedbythe optomechanicalinteractionallowstoimplementtheQPG,wefirststudytheidealcasewithno opticalandmechanicallosses,inwhichthedynamicsisdeterminedsolelybytheHamiltonian ofEq.(3),i.e.,bytheunitaryoperatorUˆ(t)=e−iHˆt/h¯.Insuchacasethedynamicscanbeex- actlysolved:infact,profitingfromthefactthatbothphotonnumberoperatorsnˆ areconserved, j andmovingtoaphoton-number-dependentdisplacedframeforthemechanicalresonator,one canrewritetheunitaryevolutionoperatorinaforminwhichtheopticalandmechanicalevo- lutionoperatorsareconvenientlyfactorized.Infact,actingwiththephotonnumberconserving mechanicaldisplacementoperator Dˆ fˆ =exp bˆ†−bˆ fˆ , (4) nˆ nˆ (cid:0) (cid:1) (cid:2)(cid:0) (cid:1) (cid:3) whichseparatestheHamiltonianaccordingto Dˆ fˆ HˆDˆ† fˆ =Hˆ +Hˆ , (5) nˆ nˆ opt b where (cid:0) (cid:1) (cid:0) (cid:1) (g nˆ +g nˆ )2 Hˆ = h¯D nˆ +h¯D nˆ −h¯w fˆ2=h¯D nˆ +h¯D nˆ −h¯ 1 1 2 2 , (6) opt 1 1 2 2 m nˆ 1 1 2 2 w m Hˆ = h¯w bˆ†bˆ, (7) b m (8) onegets Uˆ(t)=Uˆ (t)Dˆ† fˆ Uˆ (t)Dˆ fˆ , (9) opt nˆ b nˆ where Uˆopt(t)=e−iHˆoptt/h¯, and Uˆb(t)=e−iHˆbt/(cid:0)h¯. (cid:1)Therefor(cid:0)e th(cid:1)e dynamics of the two optical modesismostlydeterminedbytheeffectiveunitaryoperatorUˆ (t),possessingeitherself-Kerr opt terms (cid:181) nˆ2 and the cross-Kerr term −2h¯g g tnˆ nˆ /w ; the other factor Dˆ† fˆ Uˆ (t)Dˆ fˆ j 1 2 1 2 m nˆ b nˆ however also affects the optical mode dynamicssince it entanglesthem with the mechanical (cid:0) (cid:1) (cid:0) (cid:1) resonator,bycorrelatingtheresonatorpositionwiththephotonnumbers. The photonnumberconservingdynamicsallowsto stay within thelogicalspacedescribed above, i.e., the one spanned by optical Fock states with no more than one photon (and this will remain true even when we will include optical losses). In this case one can always fix the two detunings in order to eliminate completely the effect of the self-Kerr terms. In fact, withinthissubspace,nˆ2=nˆ ,andtherefore,takingD =g2/w , j=1,2,onehastheeffective j j j j m unitary operatorUˆ (t)=exp[2ig g tnˆ nˆ /w ], yielding a nonlinear conditionalphase shift opt 1 2 1 2 m f (t)=2g g t/w onlywheneachcavitymodehasonephoton,i.e., nl 1 2 m |0i1|0i2→|0i1|0i2; |0i1|1i2→|0i1|1i2; |1i1|0i2→|1i1|0i2; |1i1|1i2→ei2gw1mg2t|1i1|1i2. (10) Thereforewe expectto geta conditionalphaseshiftequaltop whentheinteractiontimet is equalto pw m tp = . (11) 2g g 1 2 We now evaluate the exact Hamiltonian evolution in order to see to what extent the in- teraction with the mechanical resonator affects and modifies the ideal QPG dynamics de- fined by Eqs. (10) and (11). The natural choice for the initial state is the factorized state rˆ(0)=|y i hy |⊗rˆth,where|y i isthegenericinitialstateofEq.(2),andrˆth isthethermal in b in b equilibriumstateofthemechanicalresonator,withn¯ meanthermalphonons.Byrenumbering |0i |0i →|0i, |1i |0i →|1i, |0i |1i →|2i, |1i |1i →|3i, we can write the state of the 1 2 1 2 1 2 1 2 wholesystemattimet as rˆ(t)=Uˆ(t)|y i hy |⊗rˆthUˆ†(t) (12) in b 3 = (cid:229) a a ∗Uˆ (t)|kihl|Uˆ† (t)⊗Dˆ†(f )Uˆ (t)Dˆ(f )rˆthDˆ†(f )Uˆ†(t)Dˆ(f ), k l opt opt k b k b l b l k,l=0 where Dˆ(f )=exp f bˆ†−bˆ (13) k k is now a displacement operator acting only on(cid:2)th(cid:0)e mech(cid:1)a(cid:3)nical resonator degree of freedom, witha c-numberdisplacement f , with f =0, f =g /w , f =g /w , f =(g +g )/w . k 0 1 1 m 2 2 m 3 1 2 m Weareinterestedinthestateofthetwoopticalqubitsonly,andthereforewehavetotraceover themechanicalresonator.UsingtheexplicitexpressionofUˆ (t)(withthechoiceofdetuning opt specifiedabove),andperformingthetrace,thereducedstateoftheopticalmodesreads rˆ (t)= (cid:229) 3 c (t)a a ∗exp i2g1g2t d −d |kihl|, (14) opt k,l k l w k,3 l,3 k,l=0 (cid:20) m (cid:21) (cid:0) (cid:1) whered istheKroneckerdelta,whilec (t)isthefactordescribingthedecoherencecaused k,l k,l bytheinteractionwiththemechanicalresonatorandwhoseexplicitexpressionisgivenby(see theappendixforitsderivation) c (t)=exp −(f −f )2(1−cosw t)(2n¯+1)+i f2−f2 sinw t . (15) k,l k l m l k m h (cid:0) (cid:1) i WequantifytheQPGperformancewiththefidelityrelativetotheidealpuretargetstatecorre- spondingtoap conditionalphaseshift,thatis 3 |y tgti=a 00|0i1|0i2+a 01|0i1|1i2+a 10|1i1|0i2+eip a 11|1i1|1i2= (cid:229) a keipd k,3|ki. (16) k=0 ThecorrespondingfidelityF(t)canbewrittenas F(t)≡hy |rˆ (t)|y i= (cid:229) 3 c (t)|a |2|a |2exp i 2g1g2t −p d −d . (17) tgt opt tgt k,l k l w k,3 l,3 k,l=0 (cid:20) (cid:18) m (cid:19) (cid:21) (cid:0) (cid:1) Actually,theQPGperformancecanbecharacterizedbythegatefidelity,whichistheaverage of the abovequantityoverall possible inputstates of the two qubits[41]. Since the averages aregivenby|a |4=1/8,∀k,and|a |2|a |2=1/24,∀k6=l [41],usingtheexplicitexpression k k l for c (t) ofEq. (15) implyingin particularthatc (t)=1 ∀k and thatc (t)=c (t)∗, and k,l k,k k,l l,k theexplicitvaluesofthec-numbers f ,weget k 1 F(t)=hy |rˆ (t)|y i= (18) tgt opt tgt 2 1 g2 g2 + exp − 1 (1−cosw t)(2n¯+1) cos 1 sinw t 12 w 2 m w 2 m (cid:26) (cid:20) m (cid:21)(cid:20) (cid:18) m (cid:19) g2+2g g 2g g t +cos 1 1 2sinw t+p − 1 2 w 2 m w (cid:18) m m (cid:19)(cid:21) g2 g2 +exp − 2 (1−cosw t)(2n¯+1) cos 2 sinw t w 2 m w 2 m (cid:20) m (cid:21)(cid:20) (cid:18) m (cid:19) g2+2g g 2g g t +cos 2 1 2sinw t+p − 1 2 w 2 m w (cid:18) m m (cid:19)(cid:21) g −g 2 g2−g2 +exp − 1 2 (1−cosw t)(2n¯+1) cos 2 1sinw t w m w 2 m " (cid:18) m (cid:19) # (cid:18) m (cid:19) g +g 2 g +g 2 2g g t +exp − 1 2 (1−cosw t)(2n¯+1) cos 1 2 sinw t+p − 1 2 . w m w m w " (cid:18) m (cid:19) # "(cid:18) m (cid:19) m #) From Eqs. (17) one can see that the gate fidelity F achieves the ideal value of unity when two conditions are satisfied: i) the conditional phase shift is equal to p , (or more generally to an odd multiple of p ), 2g g t/w =(2m+1)p (integer m); ii) c (t)=1, ∀k,l. Eq. (18) 1 2 m k,l shows that the latter conditions are achieved for generic nonzero couplings g and g only 1 2 aftereverymechanicaloscillationperiod,i.e.,whenw t=2pp ,p=1,2,....TheQPGwillbe m minimallyaffectedbylossesfortheshortestinteractiontimetp ofEq.(11),andtherefore,the idealconditionsforaunit-fidelityQPGwithaconditionalphaseshiftequaltop are 2gw1g2tp =p w mtp =2p ⇒g1g2= w4m2. (19) m Therefore,whenopticalandmechanicallossesarenegligible,onecanrealizeanidealQPGwith asimpleoptomechanicalsetupbyfixingtheinteractiontimebetweenthemechanicalresonator andthecavitymodesaccordingtoEq.(11),andprovidedthatthesingle-photonoptomechanical couplingscanbetunedto thestrongcouplingconditionofEq.(19).Theinteractiontimecan becontrolledintunableoptomechanicalsystemsinwhichtheinteractioncanbeturnedonand off,asitcouldbedoneforexampleintheoptomechanicalsetupofRef.[40],whereavibrating nanobeam is coupled to the evanescentfield of a whispering gallery mode of a microdisk. It is also relevant to stress that under these conditionsthe QPG is practically insensitive to the effectofthermalnoiseactingontheresonator,becauseattheexactgatedurationtp thefidelity becomescompletelyindependentuponthemeanthermalphononnumbern¯.Eq.(18)showsthat insteadthegatefidelitysignificantlydropsforincreasingn¯assoonast6=tp . 4. Dissipativedynamics Letusnowconsidertherealisticsituationinordertoseetowhatextentopticallosses,mechan- icaldamping,andthermalnoiseaffectthisidealgatebehavior.Inthatcasetheevolutionisno moreanalyticallytractable,andwewillconsiderthenumericalsolutionofthemasterequation forthedensitymatrixoftheoptomechanicalsystemunderstudy. Introducingthecavitymodesdecayk (i=1,2),themechanicaldampingg =w /Q ,and i m m m themeanthermalphononnumberassociatedwiththereservoirofthemechanicalresonator,n¯, themasterequationintheusualBorn-Markovapproximationcanbewrittenas[42] d 1 k rˆ(t)= [Hˆ,rˆ(t)]+ 1(2aˆ rˆ(t)aˆ†−aˆ†aˆ rˆ(t)−rˆ(t)aˆ†aˆ ) dt ih¯ 2 1 1 1 1 1 1 k + 2(2aˆ rˆ(t)aˆ†−aˆ†aˆ rˆ(t)−rˆ(t)aˆ†aˆ ) (20) 2 2 2 2 2 2 2 g g + m(n¯+1)(2bˆrˆ(t)bˆ†−bˆ†bˆrˆ(t)−rˆ(t)bˆ†bˆ)+ mn¯(2bˆ†rˆ(t)bˆ−bˆbˆ†rˆ(t)−rˆ(t)bˆbˆ†), 2 2 whereHˆ istheHamiltonianinEq.(3). InFig.1wecomparethebehaviorofthegatefidelityF(t)intheabsenceofdampingand lossesofEq.(18)versusthedimensionlessinteractiontimew t,eitheratn¯=0(reddot-dashed m curve),andatn¯=10(fullblackcurve)withthecorrespondingcurvesinthepresenceofoptical and mechanical damping processes. These latter curves (the dotted blue line corresponds to n¯=0,whilethegreendashedlineton¯=10)areobtainedfromthenumericalsolutionofthe master equation Eq. (20) in the case k =k =10−2w ,Q =106, while we have fixed the 1 2 m m couplingsaccordingtotheidealstrongcouplingconditionofEq.(19)g =g =w /2. 1 2 m Wesee,asexpected,thatintheabsenceofopticalandmechanicallosses,F(t)=1exactly attheinteractiontimetp ofEq.(11),regardlessthevalueofthetemperatureofthemechanical reservoir. Atdifferenttimesthe gate performanceis stronglyaffectedby thermalnoise;what isrelevantisthatinthepresenceofrealisticvaluesofmechanicaldampingandofopticalloss rates,thisscenarioisstillmaintained,withalimiteddecreaseofthegatefidelity. Fig. 1. Numerical solution of the master equation Eq. (20) for the gate fidelity F(t) versus the dimensionless interaction time w mt. We compare four different cases: i) zero damping and losses gm = k 1 = k 2 = 0 and n¯ = 10 (full black line); ii) zero damp- ing and losses and n¯ =0 (red dashed-dotted line); iii) with damping and losses (k 1 = k 2=10−2w m,Qm =106,) and n¯=10 (green dashed line); iv) with damping and losses (k 1 =k 2 =10−2w m,Qm =106,) and n¯ =0 (blue dotted line). The numerical solutions forthezerodampingandlosscaseareindistinguishablefromtheanalyticalexpressionof Eq.(18)eitheratn¯=0andatn¯=10.Inallcaseswehavefixedthecouplingsaccordingto theidealstrongcouplingconditionofEq.(19),g1=g2=w m/2. 5. Conclusions We have proposed a simple optomechanicalsetup which is able to implement an ideal QPG withaconditionalphaseshiftequaltop betweentwoopticalqubitsassociatedwiththelowest Fockstates(zeroandonephoton)ofanopticalcavitymode.Theschemeisminimalbecauseit employsonlytwomodesofahigh-finesseopticalcavityandasinglemechanicalresonatorcou- pledtothem.Theschemeisrobustinthepresenceofrealisticvaluesofopticalandmechanical losses and,if theinteractiontime is appropriatelyfixed,it isalmostcompletelyinsensitiveto thethermalnoiseactingonthemechanicalresonator.Themoststringentandchallengingcon- dition is the required strong optomechanicalcouplingcondition, given by Eq. (19), in which the single-photonoptomechanicalcouplingmustbeofthe orderofthe mechanicalresonance frequency. Such a condition has not been achieved yet in current solid-state nanomechani- cal setups, for which record values corresponds to g /w ∼10−3 [37–39]. On the contrary, j m such a strong coupling situation is normally achieved in ultracold atom realizations of cav- ityoptomechanics,wherethemechanicalresonatorcorrespondstothecollectivemotionofan ensembleoftrappedultracoldatoms;forexampleonehasg/w ∼0.3inRef.[31].Thelimita- m tionintheselattersystemsisrepresentedbycavitylosses,becauseinthiscaseoneistypically far from the resolvedsidebandregime k /w ≪1 which is requiredhere in orderthat cavity m losses donotaltersignificantlythe effectivecross-Kerrnonlinearinteractionmediatedbythe resonator,responsiblefortheQPG dynamics.Thereforethepresentproposalcouldbeimple- mentedinexperimentaloptomechanicalplatformsabletocombineasignificantlylargesingle photoncouplingg/w ∼0.5witharesolvedsidebandoperationconditionk /w ≪1. m m 6. Appendix Wenowderivetheexplicitexpressionforthedecoherencecoefficientsc (t)ofEq.(15).From k,l Eqs.(12)-(14)andusingthecyclicpropertyofthetrace,onehas c (t)=Tr Dˆ†(f )Uˆ†(t)Dˆ(f )Dˆ†(f )Uˆ (t)Dˆ(f )rˆth , (21) k,l b l b l k b k b h i whichisathermalaverageofacombinationofdisplacementoperators.Wenoticethenthatthe factorUˆ†(t)Dˆ(f )Dˆ†(f )Uˆ (t)withinthetraceisjusttheHeisenbergtimeevolutionforatime b l k b t ofadisplacementoperatorofafreemechanicalresonator,sothat Uˆ†(t)Dˆ(f )Dˆ†(f )Uˆ (t)=exp bˆ†eiw mt−bˆe−iw mt (f −f ) . (22) b l k b l k Inserting this solution within Eq. (21), and us(cid:2)in(cid:0)g the property of(cid:1)the displ(cid:3)acement operator Dˆ(a )Dˆ(b )=Dˆ(a +b )exp[iIm(ab ∗)],onegets c (t)=Tr Dˆ (f −f )(eiw mt−1) rˆth exp i(f2−f2)sinw t . (23) k,l b l k b l k m n (cid:2) (cid:3) o (cid:2) (cid:3) Performingthethermalaverageofthefinaldisplacementoperator,accordingto 1 hexp a bˆ†−a ∗bˆ i =exp −|a |2 n¯+ , (24) th 2 (cid:20) (cid:18) (cid:19)(cid:21) (cid:2) (cid:3) wefinallygetEq.(15). Acknowledgments ThisworkhasbeensupportedbytheEuropeanCommission(ITN-MarieCurieprojectcQOM andFET-OpenProjectiQUOEMS),andbyMIUR(PRIN2011).