Quantum Mechanics Foundations and Applications Quantum Mechanics Foundations and Applications D G Swanson Auburn University, Alabama, USA New York London Taylor & Francis is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2007 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20110713 International Standard Book Number-13: 978-1-58488-753-9 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Preface This book grew out of a compilation of lecture notes from a variety of other texts inModern Physics and Quantum Mechanics. Except for the part about digital frequency counters related to the uncertainty principle, none of the material is truly original, although virtually everything has been rewritten in order to unify the presentation. Over the course of twenty years, I taught the Quantum Mechanics off and on for physics majors in their junior or se- nior year, and this same course filled the gap for incoming graduate students who were not properly prepared in Quantum Mechanics to take our graduate course. Originally, it was a full year course over three quarters, but when we converted to semesters, the first half was required and the second half was optional, but recommended for majors intending to go on to graduate work in physics. In our present curriculum, the first five chapters comprise the first semester and is designed for juniors, while the remainder is designed for seniors. This leaves many of the later chapters optional for the instructor, and some sections are marked as advanced by an asterisk and can be easily deletedwithoutaffectingthecontinuity. Iliketousethegeneratingfunctions in Appendix B to establish normalization constants and recursion formulas, but they can be omitted completely. The 1-D scattering in Chapter 10 is markedasadvanced,andmaybeskipped,buttheuniqueconnectionbetween the1-DSchr¨odingerequationandtheKorteweg–deVriesequationforsolitons, which is solved using the inverse scattering method, where a nonlinear classi- cal problem is solved by the linear techniques of Quantum Mechanics I found compelling. MyownfirstcourseinQuantumMechanicswastaughtbyRobertLeighton the first year his text came out, and his use of the Fourier transform pairs forthewavefunctionsincoordinateandmomentumspacemadetheoperator formalism transparent to me, and this feature, more than any other single factor, provided the impetus for me to write this text, since this formalism is uncommon in most of the modern texts. Some of the text follows Leighton, buttherehavebeensomanyotherprimarytextsforourcourseovertheyears (with my notes as an adjunct to the text) that the topics and problems come from many sources, most of which are listed in the bibliography. In recent years, I have expanded the notes to form a primary text which has been used successfully in preparing our students for the graduate level courses in Quantum Mechanics and Quantum Statistics. This text may be especially appealing to Electrical Engineering students (I taught the Quantum Mechanics for Engineers course at the University of v vi Texas at Austin for many years) because they are already familiar with the properties of Fourier transforms. I would like to thank Leslie Lamport and Donald Knuth for their devel- opment of LATEX and TEX respectively, without which I would never have attemped to write this book. The figures have been set with TEXniques by Michael J. Wichura. If a typographical or other error is discovered in the text, please report it to me at [email protected] and I will keep a downloadable errata page on my webpage at www.physics.auburn.edu/∼swanson. D. Gary Swanson Contents 1 The Foundations of Quantum Physics 1 1.1 The Prelude to Quantum Mechanics . . . . . . . . . . . . . . 1 1.1.1 The Zeeman Effect . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Black-Body Radiation . . . . . . . . . . . . . . . . . . 2 1.1.3 Photoelectric Effect . . . . . . . . . . . . . . . . . . . 6 1.1.4 Atomic Structure, Bohr Theory . . . . . . . . . . . . . 7 1.2 Wave–Particle Duality and the Uncertainty Relation . . . . . 10 1.2.1 The Wave Properties of Particles . . . . . . . . . . . . 10 1.2.2 The Uncertainty Principle . . . . . . . . . . . . . . . . 11 1.2.3 Fourier Transforms . . . . . . . . . . . . . . . . . . . . 14 1.3 Fourier Transforms in Quantum Mechanics . . . . . . . . . . 19 1.3.1 The Quantum Mechanical Transform Pair . . . . . . . 19 1.3.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4 The Postulatory Basis of Quantum Mechanics . . . . . . . . . 23 1.4.1 Postulate 1 . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4.2 Postulate 2 . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4.3 Postulate 3 . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4.4 Postulate 4 . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5 Operators and the Mathematics of Quantum Mechanics . . . 27 1.5.1 Linearity. . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5.2 Hermitian Operators . . . . . . . . . . . . . . . . . . . 28 1.5.3 Commutators . . . . . . . . . . . . . . . . . . . . . . . 29 1.5.4 Matrices as Operators . . . . . . . . . . . . . . . . . . 30 1.5.5 Dirac Notation . . . . . . . . . . . . . . . . . . . . . . 30 1.6 Properties of Quantum Mechanical Systems . . . . . . . . . . 31 1.6.1 Wave–Particle Duality . . . . . . . . . . . . . . . . . . 31 1.6.2 The Uncertainty Principle and Schwartz’s Inequality . 32 1.6.3 The Correspondence Principle . . . . . . . . . . . . . . 34 1.6.4 Eigenvalues and Eigenfunctions . . . . . . . . . . . . . 36 1.6.5 Conservation of Probability . . . . . . . . . . . . . . . 40 2 The Schr¨odinger Equation in One Dimension 41 2.1 The Free Particle . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.1.1 Boundary Conditions and Normalization . . . . . . . . 42 2.1.2 Wave Packets . . . . . . . . . . . . . . . . . . . . . . . 43 2.1.3 Transmission and Reflection at a Barrier . . . . . . . . 46 vii viii 2.1.4 The Infinite Potential Well . . . . . . . . . . . . . . . 48 2.1.5 The Finite Potential Well . . . . . . . . . . . . . . . . 51 2.1.6 Transmission through a Barrier . . . . . . . . . . . . . 55 2.2 One-Dimensional Harmonic Oscillator . . . . . . . . . . . . . 56 2.2.1 The Schr¨odinger Equation . . . . . . . . . . . . . . . . 57 2.2.2 Changing to Dimensionless Variables . . . . . . . . . . 58 2.2.3 The Asymptotic Form . . . . . . . . . . . . . . . . . . 58 2.2.4 Factoring out the Asymptotic Behavior . . . . . . . . 59 2.2.5 Finding the Power Series Solution . . . . . . . . . . . 59 2.2.6 The Energy Eigenvalues . . . . . . . . . . . . . . . . . 60 2.2.7 Normalized Wave Functions . . . . . . . . . . . . . . . 60 2.3 Time Evolution and Completeness . . . . . . . . . . . . . . . 63 2.3.1 Completeness . . . . . . . . . . . . . . . . . . . . . . . 63 2.3.2 Time Evolution . . . . . . . . . . . . . . . . . . . . . . 64 2.4 Operator Method . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.4.1 Raising and Lowering Operators . . . . . . . . . . . . 65 2.4.2 Eigenfunctions and Eigenvalues . . . . . . . . . . . . . 67 2.4.3 Expectation Values . . . . . . . . . . . . . . . . . . . . 70 3 The Schr¨odinger Equation in Three Dimensions 73 3.1 The Free Particle in Three Dimensions . . . . . . . . . . . . . 73 3.2 Particle in a Three-Dimensional Box . . . . . . . . . . . . . . 74 3.3 The One-Electron Atom . . . . . . . . . . . . . . . . . . . . . 75 3.3.1 Separating Variables . . . . . . . . . . . . . . . . . . . 76 3.3.2 Solution of the Φ(φ) Equation . . . . . . . . . . . . . . 77 3.3.3 Orbital Angular Momentum . . . . . . . . . . . . . . . 77 3.3.4 Solving the Radial Equation . . . . . . . . . . . . . . . 87 3.3.5 Normalized Wave Functions . . . . . . . . . . . . . . . 91 3.4 Central Potentials . . . . . . . . . . . . . . . . . . . . . . . . 95 3.4.1 Nuclear Potentials . . . . . . . . . . . . . . . . . . . . 96 3.4.2 Quarks and Linear Potentials . . . . . . . . . . . . . . 98 3.4.3 Potentials for Diatomic Molecules∗ . . . . . . . . . . . 101 4 Total Angular Momentum 105 4.1 Orbital and Spin Angular Momentum . . . . . . . . . . . . . 105 4.1.1 Eigenfunctions of Jˆ and Jˆ . . . . . . . . . . . . . . . 106 x y 4.2 Half-Integral Spin Angular Momentum . . . . . . . . . . . . . 108 4.3 Addition of Angular Momenta . . . . . . . . . . . . . . . . . . 113 4.3.1 Adding Orbital Angular Momenta for Two Electrons . 113 4.3.2 Adding Orbital and Spin Angular Momenta . . . . . . 116 4.4 Interacting Spins for Two Particles . . . . . . . . . . . . . . . 119 4.4.1 Magnetic Moments . . . . . . . . . . . . . . . . . . . . 119 ix 5 Approximation Methods 123 5.1 Introduction — The Many-Electron Atom . . . . . . . . . . . 123 5.2 Nondegenerate Perturbation Theory . . . . . . . . . . . . . . 125 5.2.1 Nondegenerate First-Order Perturbation Theory . . . 126 5.2.2 Nondegenerate Second-Order Perturbation Theory . . 127 5.3 Perturbation Theory for Degenerate States . . . . . . . . . . 130 5.4 Time-Dependent Perturbation Theory . . . . . . . . . . . . . 133 5.4.1 Perturbations That Are Constant in Time . . . . . . . 134 5.4.2 Perturbations That Are Harmonic in Time . . . . . . 136 5.4.3 Adiabatic Approximation . . . . . . . . . . . . . . . . 138 5.4.4 Sudden Approximation. . . . . . . . . . . . . . . . . . 139 5.5 The Variational Method . . . . . . . . . . . . . . . . . . . . . 141 5.5.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.6 Wentzel, Kramers, and Brillouin Theory (WKB) . . . . . . . 144 5.6.1 WKB Approximation . . . . . . . . . . . . . . . . . . 144 5.6.2 WKB Connection Formulas . . . . . . . . . . . . . . . 145 5.6.3 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.6.4 Transmission through a Finite Barrier . . . . . . . . . 147 6 Atomic Spectroscopy 151 6.1 Effects of Symmetry . . . . . . . . . . . . . . . . . . . . . . . 151 6.1.1 Particle Exchange Symmetry . . . . . . . . . . . . . . 151 6.1.2 Exchange Degeneracy and Exchange Energy . . . . . . 157 6.2 Spin–Orbit Coupling in Multielectron Atoms . . . . . . . . . 159 6.2.1 Spin–Orbit Interaction . . . . . . . . . . . . . . . . . . 159 6.2.2 The Thomas Precession . . . . . . . . . . . . . . . . . 160 6.2.3 LS Coupling, or Russell–Saunders Coupling . . . . . . 161 6.2.4 Selection Rules for LS Coupling . . . . . . . . . . . . . 166 6.2.5 Zeeman Effect. . . . . . . . . . . . . . . . . . . . . . . 168 7 Quantum Statistics 175 7.1 Derivation of the Three Quantum Distribution Laws . . . . . 175 7.1.1 The Density of States . . . . . . . . . . . . . . . . . . 176 7.1.2 Identical, Distinguishable Particles . . . . . . . . . . . 179 7.1.3 Identical,IndistinguishableParticleswithHalf-Integral Spin (Fermions) . . . . . . . . . . . . . . . . . . . . . . 180 7.1.4 Identical,IndistinguishableParticleswithIntegralSpin (Bosons) . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7.1.5 The Distribution Laws . . . . . . . . . . . . . . . . . . 181 7.1.6 Evaluation of the Constant Multipliers . . . . . . . . . 183 7.2 Applications of the Quantum Distribution Laws . . . . . . . . 185 7.2.1 General Features . . . . . . . . . . . . . . . . . . . . . 185 7.2.2 Applications of the Maxwell–Boltzmann Distribution Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 7.2.3 Applications of the Fermi–Dirac Distribution Law . . 191