This page intentionally left blank QuantumMechanicsandQuantumFieldTheory Explainingtheconceptsofquantummechanicsandquantumfieldtheoryinaprecise mathematical language, this textbook is an ideal introduction for graduate students inmathematics,helpingtopreparethemforfurtherstudiesinquantumphysics. The textbook covers topics that are central to quantum physics: non-relativistic quantummechanics,quantumstatisticalmechanics,relativisticquantummechanics, and quantum field theory. There is also background material on analysis, classical mechanics,relativity,andprobability.Eachtopicisexploredthroughastatementof basicprinciplesfollowedbysimpleexamples.Around100problemsthroughoutthe textbookhelpreadersdeveloptheirunderstanding. JonathanDimock is Professor of Mathematics, SUNY at Buffalo. He has carried out research in various areas of mathematical physics, including constructive quantum fieldtheory,quantumfieldtheoryonmanifolds,renormalizationgroupmethods,and stringtheory. Quantum Mechanics and Quantum Field Theory A Mathematical Primer JONATHAN DIMOCK SUNYatBuffalo CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore, SãoPaulo,Delhi,Dubai,Tokyo,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107005099 (cid:2)c J.Dimock2011 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2011 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcatalogrecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloginginPublicationdata Dimock,Jonathan,1945– Quantummechanicsandquantumfieldtheory: amathematicalprimer/JonathanDimock. p. cm. ISBN978-1-107-00509-9(hardback) 1. Quantumtheory–Mathematics. I. Title. QC174.17.M35D56 2011 530.12–dc22 2010041723 ISBN978-1-107-00509-9Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. forBenjamin,Christina,Gregory,andAnn Contents Preface pagexi Introduction 1 PartI Non-relativistic 3 1 Mathematicalprelude 5 1.1 Boundedoperators 5 1.2 Unboundedoperators 11 1.3 Self-adjointoperators 14 1.4 Compactoperators 22 2 Classicalmechanics 28 2.1 Hamiltonianmechanics 28 2.2 Examples 29 2.3 Canonicaltransformations 31 2.4 Symmetries 34 3 Quantummechanics 38 3.1 Principlesofquantummechanics 38 3.2 Canonicalquantization 41 3.3 Symmetries 43 3.4 Perspectivesandproblems 45 4 Singleparticle 47 4.1 Freeparticle 47 4.2 Particleinapotential 48 4.3 Spectrum 51 4.4 Theharmonicoscillator 53 vii viii Contents (cid:2) 4.5 Scattering 55 4.6 Spin 58 5 Manyparticles 63 5.1 Twoparticles 63 5.2 Identicalparticles 66 5.3 n-particles 67 5.4 Fockspace 70 6 Statisticalmechanics 78 6.1 Mixedstates 78 6.2 Equilibriumstates 79 6.3 Freebosongas 83 6.4 Freefermiongas 86 6.5 Interactingbosons 88 6.6 Furtherdevelopments 90 PartII Relativistic 93 7 Relativity 95 7.1 Principlesofrelativity 95 7.2 Minkowskispace 96 7.3 Classicalfreefields 103 7.4 Interactingclassicalfields 107 7.5 Fundamentalsolutions 111 8 Scalarparticlesandfields 114 8.1 Scalarparticles 114 8.2 Scalarfields 118 8.3 Chargedscalarfield 126 9 Electronsandphotons 130 9.1 Spinors 130 9.2 Electrons 132 9.3 Diracfields 139 9.4 Photons 144 9.5 Electromagneticfield 148 10 Fieldtheoryonamanifold 152 10.1 Lorentzianmanifolds 152