ebook img

Quantum Information Theory and Quantum Statistics PDF

219 Pages·2008·2.368 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Information Theory and Quantum Statistics

Theoretical and Mathematical Physics The series founded in 1975 and formerly (until 2005) entitled Texts and Monographs in Physics (TMP) publishes high-level monographs in theoretical and mathematical physics. The change of title to Theoretical and Mathematical Physics (TMP) signals thattheseriesisasuitablepublicationplatformforboththemathematicalandthethe- oretical physicist. The wider scope of theseries is reflectedby the composition of the editorialboard,comprisingbothphysicistsandmathematicians. Thebooks,writteninadidacticstyleandcontainingacertainamountofelementary background material, bridge the gap between advanced textbooks and research mono- graphs. They can thus serve as basis for advanced studies, not only for lectures and seminarsatgraduatelevel,butalsoforscientistsenteringafieldofresearch. EditorialBoard W.Beiglböck,InstituteofAppliedMathematics,UniversityofHeidelberg,Germany J.-P.Eckmann,DepartmentofTheoreticalPhysics,UniversityofGeneva,Switzerland H.Grosse,InstituteofTheoreticalPhysics,UniversityofVienna,Austria M.Loss,SchoolofMathematics,GeorgiaInstituteofTechnology,Atlanta,GA,USA S.Smirnov,MathematicsSection,UniversityofGeneva,Switzerland L.Takhtajan,DepartmentofMathematics,StonyBrookUniversity,NY,USA J.Yngvason,InstituteofTheoreticalPhysics,UniversityofVienna,Austria JohnvonNeumann ClaudeShannon ErwinSchr¨odinger Dénes Petz Quantum Information Theory and Quantum Statistics With 10 Figures Prof.DénesPetz AlfrédRényiInstituteofMathematics POB127,H-1364Budapest,Hungary [email protected] D.Petz,QuantumInformationTheoryandQuantumStatistics,TheoreticalandMathe- maticalPhysics(Springer,BerlinHeidelberg2008)DOI10.1007/978-3-540-74636-2 ISBN978-3-540-74634-8 e-ISBN978-3-540-74636-2 TheoreticalandMathematicalPhysicsISSN1864-5879 LibraryofCongressControlNumber:2007937399 (cid:2)c 2008Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliableforprosecutionundertheGermanCopyrightLaw. Theuseofgeneral descriptive names,registered names, trademarks, etc. inthis publication does not imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:eStudioCalamar,Girona/Spain Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com Preface Quantummechanicswasoneoftheveryimportantnewtheoriesofthe20thcentury. John von Neumann worked in Go¨ttingen in the 1920s when Werner Heisenberg gave the first lectures on the subject. Quantum mechanics motivated the creation of new areasin mathematics;the theoryof linear operatorson Hilbertspaceswas certainlysuchanarea.JohnvonNeumannmadeanefforttowardthemathematical foundation,andhisbook“Themathematicalfoundationofquantummechanics”is stillratherinterestingtostudy.Thebookisapreciseandself-containeddescription ofthetheory,somenotationshavebeenchangedinthemeantimeintheliterature. Althoughquantummechanicsismathematicallyaperfecttheory,itisfullofin- terestingmethodsandtechniques;theinterpretationisproblematicformanypeople. Anexampleofthestrangeattitudesisthefollowing:“Quantummechanicsisnota theoryaboutreality,itisaprescriptionformakingthebestpossiblepredictionabout thefutureifwehavecertaininformationaboutthepast”(G.‘t’Hooft,1988).The interpretationsofquantumtheoryarenotconsideredinthisbook.Thebackground of the problemsmightbe the probabilisticfeatureof the theory.On one hand,the result of a measurement is random with a well-defined distribution; on the other hand,therandomquantitiesdonothavejointdistributioninmanycases.Thelatter featurejustifiestheso-calledquantumprobabilitytheory. AbstractinformationtheorywasproposedbyelectricengineerClaudeShannon in the 1940s. It became clear that coding is very important to make the informa- tion transfer efficient. Although quantum mechanics was already established, the informationconsideredwasclassical; roughlyspeaking,thismeansthetransferof 0–1sequences.Quantuminformationtheorywasbornmuchlater inthe 1990s.In 1993C. H. Bennett,G.Brassard, C. Crepeau,R. Jozsa, A. PeresandW. Wootters publishedthe paperTeleportingan unknownquantumstate via dualclassicaland EPR channels, which describes a state teleportation protocol. The protocol is not complicated;itissomewhatsurprisingthatitwasnotdiscoveredmuchearlier.The reasoncan be thatthe interestin quantumcomputationmotivatedthe studyof the transmissionofquantumstates. Manythingsin quantuminformationtheoryisre- lated to quantum computationand to its algorithms. Measurements on a quantum systemprovideclassicalinformation,andduetotherandomnessclassicalstatistics v vi Preface canbeusedtoestimatethetruestate.Insomeexamples,quantuminformationcan appear,thestateofasubsystemcanbeso. The material of this book was lectured at the Budapest University of Technol- ogyandEconomicsandattheCentralEuropeanUniversitymostlyforphysicsand mathematicsmajors,and fornewcomersin the area. Thebookaddressesgraduate studentsinmathematics,physics,theoreticalandmathematicalphysicistswithsome interestintherigorousapproach.Thebookdoesnotcoverseveralimportantresults in quantuminformationtheoryandquantumstatistics. Theemphasisisputonthe real introductory explanation for certain important concepts. Numerous examples andexercisesarealsousedtoachievethisgoal.Thepresentationismathematically completelyrigorousbutfriendlywheneveritispossible.Sincethesubjectisbased onnon-trivialapplicationsofmatrices,theappendixsummarizestherelevantpartof linearanalysis.Standardundergraduatecoursesofquantummechanics,probability theory,linearalgebraandfunctionalanalysisareassumed.Althoughtheemphasis is on quantum information theory, many things from classical information theory areexplainedaswell.Someknowledgeaboutclassicalinformationtheoryisconve- nient,butnotnecessary. I thank my students and colleagues, especially Tsuyoshi Ando, Thomas Baier, ImreCsisza´r,KatalinHangos,FumioHiai,Ga´borKiss,Mila´nMosonyiandJo´zsef Pitrik,forhelpingmetoimprovethemanuscript. De´nesPetz Contents 1 Introduction................................................... 1 2 PrerequisitesfromQuantumMechanics .......................... 3 2.1 PostulatesofQuantumMechanics ........................... 4 2.2 StateTransformations...................................... 14 2.3 Notes ................................................... 22 2.4 Exercises ................................................ 22 3 InformationanditsMeasures ................................... 25 3.1 Shannon’sApproach....................................... 26 3.2 ClassicalSourceCoding.................................... 28 3.3 vonNeumannEntropy ..................................... 34 3.4 QuantumRelativeEntropy.................................. 37 3.5 Re´nyiEntropy ............................................ 45 3.6 Notes ................................................... 49 3.7 Exercises ................................................ 50 4 Entanglement.................................................. 53 4.1 BipartiteSystems ......................................... 53 4.2 DenseCodingandTeleportation............................. 63 4.3 EntanglementMeasures.................................... 67 4.4 Notes ................................................... 69 4.5 Exercises ................................................ 70 5 MoreAboutInformationQuantities.............................. 73 5.1 Shannon’sMutualInformation .............................. 73 5.2 MarkovChains ........................................... 74 5.3 EntropyofPartiedSystems ................................. 76 5.4 StrongSubadditivityofthevonNeumannEntropy.............. 78 5.5 TheHolevoQuantity ...................................... 79 5.6 TheEntropyExchange..................................... 80 vii viii Contents 5.7 Notes ................................................... 81 5.8 Exercises ................................................ 82 6 QuantumCompression ......................................... 83 6.1 DistancesBetweenStates................................... 83 6.2 ReliableCompression...................................... 85 6.3 Universality .............................................. 88 6.4 Notes ................................................... 90 6.5 Exercises ................................................ 90 7 ChannelsandTheirCapacity.................................... 91 7.1 InformationChannels...................................... 91 7.2 TheShannonCapacity ..................................... 92 7.3 HolevoCapacity .......................................... 95 7.4 Classical-quantumChannels ................................104 7.5 Entanglement-assistedCapacity .............................105 7.6 Notes ...................................................106 7.7 Exercises ................................................106 8 HypothesisTesting .............................................109 8.1 TheQuantumSteinLemma.................................110 8.2 TheQuantumChernoffBound ..............................116 8.3 Notes ...................................................119 8.4 Exercises ................................................120 9 Coarse-grainings...............................................121 9.1 BasicExamples...........................................121 9.2 ConditionalExpectations...................................123 9.3 CommutingSquares .......................................131 9.4 Superadditivity ...........................................133 9.5 Sufficiency...............................................133 9.6 MarkovStates ............................................138 9.7 Notes ...................................................141 9.8 Exercises ................................................142 10 StateEstimation ...............................................143 10.1 EstimationSchemas .......................................143 10.2 Crame´r–RaoInequalities ...................................150 10.3 QuantumFisherInformation ................................154 10.4 ContrastFunctionals.......................................162 10.5 Notes ...................................................163 10.6 Exercises ................................................164 Contents ix 11 Appendix:AuxiliaryLinearandConvexAnalysis..................165 11.1 HilbertSpacesandTheirOperators ..........................165 11.2 PositiveOperatorsandMatrices .............................167 11.3 FunctionalCalculusforMatrices ............................170 11.4 Distances ................................................175 11.5 Majorization .............................................177 11.6 OperatorMonotoneFunctions...............................180 11.7 PositiveMappings.........................................189 11.8 MatrixAlgebras ..........................................195 11.9 ConjugateConvexFunction.................................198 11.10 SomeTraceInequalities....................................199 11.11 Notes ...................................................200 11.12 Exercises ................................................200 Bibliography.......................................................205 Index .............................................................211

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.