Theoretical and Mathematical Physics The series founded in 1975 and formerly (until 2005) entitled Texts and Monographs in Physics (TMP) publishes high-level monographs in theoretical and mathematical physics. The change of title to Theoretical and Mathematical Physics (TMP) signals thattheseriesisasuitablepublicationplatformforboththemathematicalandthethe- oretical physicist. The wider scope of theseries is reflectedby the composition of the editorialboard,comprisingbothphysicistsandmathematicians. Thebooks,writteninadidacticstyleandcontainingacertainamountofelementary background material, bridge the gap between advanced textbooks and research mono- graphs. They can thus serve as basis for advanced studies, not only for lectures and seminarsatgraduatelevel,butalsoforscientistsenteringafieldofresearch. EditorialBoard W.Beiglböck,InstituteofAppliedMathematics,UniversityofHeidelberg,Germany J.-P.Eckmann,DepartmentofTheoreticalPhysics,UniversityofGeneva,Switzerland H.Grosse,InstituteofTheoreticalPhysics,UniversityofVienna,Austria M.Loss,SchoolofMathematics,GeorgiaInstituteofTechnology,Atlanta,GA,USA S.Smirnov,MathematicsSection,UniversityofGeneva,Switzerland L.Takhtajan,DepartmentofMathematics,StonyBrookUniversity,NY,USA J.Yngvason,InstituteofTheoreticalPhysics,UniversityofVienna,Austria JohnvonNeumann ClaudeShannon ErwinSchr¨odinger Dénes Petz Quantum Information Theory and Quantum Statistics With 10 Figures Prof.DénesPetz AlfrédRényiInstituteofMathematics POB127,H-1364Budapest,Hungary [email protected] D.Petz,QuantumInformationTheoryandQuantumStatistics,TheoreticalandMathe- maticalPhysics(Springer,BerlinHeidelberg2008)DOI10.1007/978-3-540-74636-2 ISBN978-3-540-74634-8 e-ISBN978-3-540-74636-2 TheoreticalandMathematicalPhysicsISSN1864-5879 LibraryofCongressControlNumber:2007937399 (cid:2)c 2008Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliableforprosecutionundertheGermanCopyrightLaw. Theuseofgeneral descriptive names,registered names, trademarks, etc. inthis publication does not imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:eStudioCalamar,Girona/Spain Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com Preface Quantummechanicswasoneoftheveryimportantnewtheoriesofthe20thcentury. John von Neumann worked in Go¨ttingen in the 1920s when Werner Heisenberg gave the first lectures on the subject. Quantum mechanics motivated the creation of new areasin mathematics;the theoryof linear operatorson Hilbertspaceswas certainlysuchanarea.JohnvonNeumannmadeanefforttowardthemathematical foundation,andhisbook“Themathematicalfoundationofquantummechanics”is stillratherinterestingtostudy.Thebookisapreciseandself-containeddescription ofthetheory,somenotationshavebeenchangedinthemeantimeintheliterature. Althoughquantummechanicsismathematicallyaperfecttheory,itisfullofin- terestingmethodsandtechniques;theinterpretationisproblematicformanypeople. Anexampleofthestrangeattitudesisthefollowing:“Quantummechanicsisnota theoryaboutreality,itisaprescriptionformakingthebestpossiblepredictionabout thefutureifwehavecertaininformationaboutthepast”(G.‘t’Hooft,1988).The interpretationsofquantumtheoryarenotconsideredinthisbook.Thebackground of the problemsmightbe the probabilisticfeatureof the theory.On one hand,the result of a measurement is random with a well-defined distribution; on the other hand,therandomquantitiesdonothavejointdistributioninmanycases.Thelatter featurejustifiestheso-calledquantumprobabilitytheory. AbstractinformationtheorywasproposedbyelectricengineerClaudeShannon in the 1940s. It became clear that coding is very important to make the informa- tion transfer efficient. Although quantum mechanics was already established, the informationconsideredwasclassical; roughlyspeaking,thismeansthetransferof 0–1sequences.Quantuminformationtheorywasbornmuchlater inthe 1990s.In 1993C. H. Bennett,G.Brassard, C. Crepeau,R. Jozsa, A. PeresandW. Wootters publishedthe paperTeleportingan unknownquantumstate via dualclassicaland EPR channels, which describes a state teleportation protocol. The protocol is not complicated;itissomewhatsurprisingthatitwasnotdiscoveredmuchearlier.The reasoncan be thatthe interestin quantumcomputationmotivatedthe studyof the transmissionofquantumstates. Manythingsin quantuminformationtheoryisre- lated to quantum computationand to its algorithms. Measurements on a quantum systemprovideclassicalinformation,andduetotherandomnessclassicalstatistics v vi Preface canbeusedtoestimatethetruestate.Insomeexamples,quantuminformationcan appear,thestateofasubsystemcanbeso. The material of this book was lectured at the Budapest University of Technol- ogyandEconomicsandattheCentralEuropeanUniversitymostlyforphysicsand mathematicsmajors,and fornewcomersin the area. Thebookaddressesgraduate studentsinmathematics,physics,theoreticalandmathematicalphysicistswithsome interestintherigorousapproach.Thebookdoesnotcoverseveralimportantresults in quantuminformationtheoryandquantumstatistics. Theemphasisisputonthe real introductory explanation for certain important concepts. Numerous examples andexercisesarealsousedtoachievethisgoal.Thepresentationismathematically completelyrigorousbutfriendlywheneveritispossible.Sincethesubjectisbased onnon-trivialapplicationsofmatrices,theappendixsummarizestherelevantpartof linearanalysis.Standardundergraduatecoursesofquantummechanics,probability theory,linearalgebraandfunctionalanalysisareassumed.Althoughtheemphasis is on quantum information theory, many things from classical information theory areexplainedaswell.Someknowledgeaboutclassicalinformationtheoryisconve- nient,butnotnecessary. I thank my students and colleagues, especially Tsuyoshi Ando, Thomas Baier, ImreCsisza´r,KatalinHangos,FumioHiai,Ga´borKiss,Mila´nMosonyiandJo´zsef Pitrik,forhelpingmetoimprovethemanuscript. De´nesPetz Contents 1 Introduction................................................... 1 2 PrerequisitesfromQuantumMechanics .......................... 3 2.1 PostulatesofQuantumMechanics ........................... 4 2.2 StateTransformations...................................... 14 2.3 Notes ................................................... 22 2.4 Exercises ................................................ 22 3 InformationanditsMeasures ................................... 25 3.1 Shannon’sApproach....................................... 26 3.2 ClassicalSourceCoding.................................... 28 3.3 vonNeumannEntropy ..................................... 34 3.4 QuantumRelativeEntropy.................................. 37 3.5 Re´nyiEntropy ............................................ 45 3.6 Notes ................................................... 49 3.7 Exercises ................................................ 50 4 Entanglement.................................................. 53 4.1 BipartiteSystems ......................................... 53 4.2 DenseCodingandTeleportation............................. 63 4.3 EntanglementMeasures.................................... 67 4.4 Notes ................................................... 69 4.5 Exercises ................................................ 70 5 MoreAboutInformationQuantities.............................. 73 5.1 Shannon’sMutualInformation .............................. 73 5.2 MarkovChains ........................................... 74 5.3 EntropyofPartiedSystems ................................. 76 5.4 StrongSubadditivityofthevonNeumannEntropy.............. 78 5.5 TheHolevoQuantity ...................................... 79 5.6 TheEntropyExchange..................................... 80 vii viii Contents 5.7 Notes ................................................... 81 5.8 Exercises ................................................ 82 6 QuantumCompression ......................................... 83 6.1 DistancesBetweenStates................................... 83 6.2 ReliableCompression...................................... 85 6.3 Universality .............................................. 88 6.4 Notes ................................................... 90 6.5 Exercises ................................................ 90 7 ChannelsandTheirCapacity.................................... 91 7.1 InformationChannels...................................... 91 7.2 TheShannonCapacity ..................................... 92 7.3 HolevoCapacity .......................................... 95 7.4 Classical-quantumChannels ................................104 7.5 Entanglement-assistedCapacity .............................105 7.6 Notes ...................................................106 7.7 Exercises ................................................106 8 HypothesisTesting .............................................109 8.1 TheQuantumSteinLemma.................................110 8.2 TheQuantumChernoffBound ..............................116 8.3 Notes ...................................................119 8.4 Exercises ................................................120 9 Coarse-grainings...............................................121 9.1 BasicExamples...........................................121 9.2 ConditionalExpectations...................................123 9.3 CommutingSquares .......................................131 9.4 Superadditivity ...........................................133 9.5 Sufficiency...............................................133 9.6 MarkovStates ............................................138 9.7 Notes ...................................................141 9.8 Exercises ................................................142 10 StateEstimation ...............................................143 10.1 EstimationSchemas .......................................143 10.2 Crame´r–RaoInequalities ...................................150 10.3 QuantumFisherInformation ................................154 10.4 ContrastFunctionals.......................................162 10.5 Notes ...................................................163 10.6 Exercises ................................................164 Contents ix 11 Appendix:AuxiliaryLinearandConvexAnalysis..................165 11.1 HilbertSpacesandTheirOperators ..........................165 11.2 PositiveOperatorsandMatrices .............................167 11.3 FunctionalCalculusforMatrices ............................170 11.4 Distances ................................................175 11.5 Majorization .............................................177 11.6 OperatorMonotoneFunctions...............................180 11.7 PositiveMappings.........................................189 11.8 MatrixAlgebras ..........................................195 11.9 ConjugateConvexFunction.................................198 11.10 SomeTraceInequalities....................................199 11.11 Notes ...................................................200 11.12 Exercises ................................................200 Bibliography.......................................................205 Index .............................................................211