Lecture Notes in Physics Volume 863 FoundingEditors W.Beiglböck J.Ehlers K.Hepp H.Weidenmüller EditorialBoard B.-G.Englert,Singapore,Singapore U.Frisch,Nice,France P.Hänggi,Augsburg,Germany W.Hillebrandt,Garching,Germany M.Hjort-Jensen,Oslo,Norway R.A.L.Jones,Sheffield,UK H.vonLöhneysen,Karlsruhe,Germany M.S.Longair,Cambridge,UK M.L.Mangano,Geneva,Switzerland J.-F.Pinton,Lyon,France J.-M.Raimond,Paris,France A.Rubio,Donostia,SanSebastian,Spain M.Salmhofer,Heidelberg,Germany D.Sornette,Zurich,Switzerland S.Theisen,Potsdam,Germany D.Vollhardt,Augsburg,Germany W.Weise,Garching,Germany Forfurthervolumes: www.springer.com/series/5304 The Lecture Notes in Physics TheseriesLectureNotesinPhysics(LNP),foundedin1969,reportsnewdevelop- ments in physics research and teaching—quickly and informally, but with a high quality and the explicit aim to summarize and communicate current knowledge in an accessible way. Books published in this series are conceived as bridging mate- rialbetweenadvancedgraduatetextbooksandtheforefrontofresearchandtoserve threepurposes: • to be a compact and modern up-to-date source of reference on a well-defined topic • to serve as an accessible introduction to the field to postgraduate students and nonspecialistresearchersfromrelatedareas • to be a source of advanced teaching material for specialized seminars, courses andschools Both monographs and multi-author volumes will be considered for publication. Editedvolumesshould,however,consistofaverylimitednumberofcontributions only.ProceedingswillnotbeconsideredforLNP. Volumes published in LNP are disseminated both in print and in electronic for- mats,theelectronicarchivebeingavailableatspringerlink.com.Theseriescontent isindexed,abstractedandreferencedbymanyabstractingandinformationservices, bibliographicnetworks,subscriptionagencies,librarynetworks,andconsortia. Proposals should be sent to a member of the Editorial Board, or directly to the managingeditoratSpringer: ChristianCaron SpringerHeidelberg PhysicsEditorialDepartmentI Tiergartenstrasse17 69121Heidelberg/Germany [email protected] Gianluca Calcagni (cid:2) Lefteris Papantonopoulos (cid:2) George Siopsis (cid:2) Nikos Tsamis Editors Quantum Gravity and Quantum Cosmology Editors GianlucaCalcagni GeorgeSiopsis InstitutodeEstructuradelaMateria DepartmentofPhysicsandAstronomy CSIC TheUniversityofTennessee Madrid,Spain Knoxville,TN,USA NikosTsamis LefterisPapantonopoulos CreteCenterforTheoreticalPhysics DepartmentofPhysics DepartmentofPhysics NationalTechnicalUniversityofAthens UniversityofCrete Athens,Greece Heraklion,Greece ISSN0075-8450 ISSN1616-6361(electronic) LectureNotesinPhysics ISBN978-3-642-33035-3 ISBN978-3-642-33036-0(eBook) DOI10.1007/978-3-642-33036-0 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012952147 ©Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface ThisbookisaneditedversionofthereviewtalksgivenintheSixthAegeanSchool on Quantum Gravity and Quantum Cosmology, held in Chora on Naxos Island, Greece, from 12th to 17th of September 2011. The aim is to present an advanced multiauthoredtextbookmeetingtheneedsofbothpostgraduatestudentsandyoung researchers,inthefieldsofgravity,relativity,cosmologyandquantumfieldtheory. Quantum gravity in a broad sense is a fast-growing subject in physics and its studyisexpectedtogiveanswersontheshort-distancebehaviourofthegravitational interaction.Probingthehigh-energyandhigh-curvatureregimesofgravitatingsys- tems can shed some light on the ways to achieve an ultraviolet complete quantum theory of gravity, giving us information about fundamental problems of classical gravitysuchas theinitialbig-bangsingularity,thecosmologicalconstantproblem andthephysicsatandbeyondthePlanckscale.Ontheotherhand,itcangivevital informationontheearly-timeinflationaryevolutionofourUniverse. The selected contributions to this volume discuss quantum gravity theories in connection with cosmological models and observations, and explore what type of signaturemodernandmathematicallyrigorousframeworkscanbedetectedbyex- periments. In the first part of the book, the idea of quantum gravity is introduced and ap- proachedfromdifferentangles.InthearticlebyKellyStelle,anoverviewisgiven ofthewayinwhichtheunificationprogramofparticlephysicshasevolvedintothe proposal of superstring theory as a prime candidate for unifying gravity with the otherforcesandparticlesofnature.Akeyconcernwithquantumgravityhasbeen the problem of ultraviolet divergences, which is naturally solved in string theory byreplacingparticleswithspatiallyextendedstatesasthefundamentalexcitations. Next, Abhay Ashtekar is presenting a broad perspective on loop quantum gravity and cosmology,while the article by Carlo Rovellisummarizes the present state of the covariant formulation of the loop quantum gravity dynamics. A lattice spinor gravity is formulated in the next article by Christof Wetterich, explaining why the keyingredientforlatticeregularizedquantumgravityisdiffeomorphismsymmetry. Andrzei Görlich describes the method of causal dynamical triangulations, a non- perturbative and background independent approach to quantum theory of gravity. v vi Preface The first part of the book ends with the article by E. Bergshoeff, M. Kovacevic, J.RosseelandY.Yinwhoreviewtherecentdevelopmentsinmassivegravity. The second part of the book deals with quantum cosmology. Martin Bojoward presentsloopquantumcosmologyasanattempttounderstandthedynamicsofloop quantumgravitybyrealizingcrucialeffectsinsimpler,usuallysymmetricsettings. ThenextarticlebyMartinReuterandFrankSaueressig,afterintroducingthebasic ideasoftheasymptoticsafetyapproachtoquantumEinsteingravity,discussesthe implicationsofasymptoticsafetyforthecosmologyoftheearlyUniverse.Thelast articleisbyPaulMcFadden,abouttherecentdevelopmentsinholographiccosmol- ogywhichenablesfour-dimensionalinflationaryuniversestobedescribedinterms ofthree-dimensionaldualquantumfieldtheories. Inthethirdpartof thebook,theobservationalstatusofdarkmatter(thearticle byJoeSilk)andtheobservationalstatusofdarkenergy(overviewedbyShinjiTsu- jikawa)arepresented.ThecontributionbyRobertBrandenbergerdescribestwoal- ternativestothecurrentcosmologicalscenario,thematterbounceandthestringgas cosmologyscenarios.Thelastarticle,byM.Romania,N.TsamisandR.Woodard, presents a class of non-local, gravitational models obtained in quantum gravity in anacceleratingcosmologicalbackground. The Sixth Aegean School and the present book became possible with the kind support of many people and organizations. The School was organized and spon- sored by the Albert Einstein Institute in Potsdam, the Physics Department of the UniversityofCrete,thePhysicsDepartmentoftheUniversityofTennesseeandthe PhysicsDepartmentofNationalTechnicalUniversityofAthens,anditwascospon- soredbytheMunicipalityofNaxosandtheGeneralSecretariatofAegeanandIsland Policy.WespeciallythanktheMunicipalityofNaxosformakingavailabletousall theexcellentfacilitiesoftheCulturalCenterintheformerUrsulineSchoolandall thestaffofthecenterforhelpingustorunsmoothlytheschool.WealsothankKa- terinaChiou-LahanasforhervaluablehelpinorganizingtheschoolinNaxos.The administrativesupportoftheSixthAegeanSchoolwastakenupwithgreatcareby Fani Siatra and Katerina Papantonopoulou. We acknowledge the help of Vassilis Zamarias who designed and maintained the webside of the School. We also thank PetrosSkamagoulisforhelpingusineditingthisbook. Last, but not least, we are grateful to the staff of Springer-Verlag, responsible fortheLectureNotesinPhysics,whoseabilitiesandhelpcontributedgreatlytothe appearanceofthisbook. GianlucaCalcagni LefterisPapantonopoulos GeorgeSiopsis NikosTsamis Contents PartI QuantumGravity 1 StringTheory,UnificationandQuantumGravity . . . . . . . . . . . 3 K.S.Stelle 1.1 Introduction:TheUltravioletProblemsofGravity . . . . . . . . . 3 1.2 StringTheoryBasics . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 ReparametrizationInvariance . . . . . . . . . . . . . . . . 6 1.2.2 TheStringAction . . . . . . . . . . . . . . . . . . . . . . 7 1.3 EffectiveFieldEquations . . . . . . . . . . . . . . . . . . . . . . 10 1.4 DimensionalReductionandT-Duality . . . . . . . . . . . . . . . 12 1.4.1 DimensionalReductionofStringsandT-Duality . . . . . . 13 1.5 M-TheoryandtheWebofDualities . . . . . . . . . . . . . . . . . 15 1.6 BranesandDuality. . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.7 TheOnsetofSupergravityDivergences . . . . . . . . . . . . . . . 20 1.7.1 SupergravityCountertermAnalysis . . . . . . . . . . . . . 22 1.7.2 SupergravityDivergencesfromSuperstrings . . . . . . . . 25 1.8 OtherAspectsofStringTheory . . . . . . . . . . . . . . . . . . . 26 1.8.1 TheStringScale . . . . . . . . . . . . . . . . . . . . . . . 26 1.8.2 BoundariesofModuliSpace . . . . . . . . . . . . . . . . 27 1.8.3 StringandGravityThermodynamics . . . . . . . . . . . . 28 1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 IntroductiontoLoopQuantumGravityandCosmology . . . . . . . 31 AbhayAshtekar 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.1.1 DevelopmentofQuantumGravity:ABird’sEyeView . . . 31 2.1.2 PhysicalQuestionsofQuantumGravity . . . . . . . . . . 36 2.2 LoopQuantumGravityandCosmology . . . . . . . . . . . . . . . 38 2.2.1 Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.2 Advances. . . . . . . . . . . . . . . . . . . . . . . . . . . 40 vii viii Contents 2.2.3 ChallengesandOpportunities . . . . . . . . . . . . . . . . 47 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 CovariantLoopGravity . . . . . . . . . . . . . . . . . . . . . . . . . 57 CarloRovelli 3.1 TheDefinitionoftheTheory . . . . . . . . . . . . . . . . . . . . 57 3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3 TheDiscretizationofParametrizedSystems . . . . . . . . . . . . 59 3.4 TheDiscretizationofClassicalGeneralRelativity . . . . . . . . . 62 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4 SpinorGravityandDiffeomorphismInvarianceontheLattice. . . . 67 C.Wetterich 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2 SpinorsasFundamentalDegreesofFreedom . . . . . . . . . . . . 68 4.3 ActionandFunctionalIntegral . . . . . . . . . . . . . . . . . . . 71 4.4 GeneralizedLorentzTransformations . . . . . . . . . . . . . . . . 72 4.5 LorentzInvariantSpinorBilinears . . . . . . . . . . . . . . . . . . 74 4.6 ActionwithLocalLorentzSymmetry . . . . . . . . . . . . . . . . 75 4.7 GaugeandDiscreteSymmetries . . . . . . . . . . . . . . . . . . . 77 4.8 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.9 LatticeAction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.10 LatticeDiffeomorphismInvariance . . . . . . . . . . . . . . . . . 81 4.11 LatticeDiffeomorphismInvarianceinTwoDimensions . . . . . . 83 4.12 EffectiveAction . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.13 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.14 EffectiveActionforGravityandGravitationalFieldEquations . . 89 4.15 ConclusionsandDiscussion . . . . . . . . . . . . . . . . . . . . . 90 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5 IntroductiontoCausalDynamicalTriangulations . . . . . . . . . . . 93 AndrzejGörlich 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1.1 CausalTriangulations . . . . . . . . . . . . . . . . . . . . 94 5.1.2 TheReggeActionandtheWickRotation . . . . . . . . . . 96 5.2 PhaseDiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.3 TheMacroscopicdeSitterUniverse . . . . . . . . . . . . . . . . . 100 5.3.1 TheSpatialVolume . . . . . . . . . . . . . . . . . . . . . 100 5.3.2 TheMini-superspaceModel . . . . . . . . . . . . . . . . . 102 5.3.3 TheFour-DimensionalSpace-Time . . . . . . . . . . . . . 103 5.4 QuantumFluctuations . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4.1 TheEffectiveAction . . . . . . . . . . . . . . . . . . . . . 109 5.4.2 FlowoftheGravitationalConstant . . . . . . . . . . . . . 112 5.5 TheGeometryofSpatialSlices . . . . . . . . . . . . . . . . . . . 113 5.5.1 TheHausdorffDimension . . . . . . . . . . . . . . . . . . 113 Contents ix 5.5.2 SpectralDimension . . . . . . . . . . . . . . . . . . . . . 115 5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6 MassiveGravity:APrimer . . . . . . . . . . . . . . . . . . . . . . . 119 E.A.Bergshoeff,M.Kovacevic,J.Rosseel,andY.Yin 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.2 GeneralSpin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2.1 “BoostinguptheDerivatives” . . . . . . . . . . . . . . . . 121 6.2.2 “TakingtheSquareRoot” . . . . . . . . . . . . . . . . . . 125 6.3 Spin1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.4 Spin2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.4.1 3DNewMassiveGravity . . . . . . . . . . . . . . . . . . 131 6.4.2 3DTopologicalMassiveGravity . . . . . . . . . . . . . . 136 6.4.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Appendix Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 PartII QuantumCosmology 7 LoopQuantumCosmology,Space-TimeStructure,andFalsifiability 149 MartinBojowald 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 7.2 CanonicalGravity . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.2.1 CosmicSubtleties . . . . . . . . . . . . . . . . . . . . . . 154 7.2.2 DeformationsofSpace . . . . . . . . . . . . . . . . . . . 156 7.2.3 GaugeTheory . . . . . . . . . . . . . . . . . . . . . . . . 157 7.2.4 QuantumCorrections . . . . . . . . . . . . . . . . . . . . 159 7.3 LoopQuantumGravity . . . . . . . . . . . . . . . . . . . . . . . 160 7.3.1 CorrectionsfromLoopQuantumGravity . . . . . . . . . . 162 7.3.2 ConstructionofInverse-TriadCorrections . . . . . . . . . 163 7.3.3 Anomaly-Freedom . . . . . . . . . . . . . . . . . . . . . . 164 7.3.4 Falsifiability . . . . . . . . . . . . . . . . . . . . . . . . . 166 7.3.5 Anomaly-FreeHolonomyCorrections . . . . . . . . . . . 167 7.4 EffectiveTheories . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.4.1 EffectiveCanonicalDynamics . . . . . . . . . . . . . . . 170 7.4.2 MomentDynamics. . . . . . . . . . . . . . . . . . . . . . 172 7.4.3 EffectiveConstraints. . . . . . . . . . . . . . . . . . . . . 174 7.4.4 IsotropicCosmology. . . . . . . . . . . . . . . . . . . . . 177 7.4.5 Beginning . . . . . . . . . . . . . . . . . . . . . . . . . . 179 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 8 AsymptoticSafety,Fractals,andCosmology . . . . . . . . . . . . . . 185 MartinReuterandFrankSaueressig 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 x Contents 8.2 TheorySpaceandItsTruncation . . . . . . . . . . . . . . . . . . 188 8.3 TheEffectiveAverageActionforGravity . . . . . . . . . . . . . . 192 8.4 TheEinstein–HilbertTruncation . . . . . . . . . . . . . . . . . . 194 8.5 TheMulti-fractalPropertiesofQEGSpace-Times . . . . . . . . . 197 8.6 Spectral,Walk,andHausdorffDimension. . . . . . . . . . . . . . 200 8.7 FractalDimensionsWithinQEG . . . . . . . . . . . . . . . . . . 202 8.7.1 DiffusionProcessesonQEGSpace-Times . . . . . . . . . 202 8.7.2 TheSpectralDimensioninQEG . . . . . . . . . . . . . . 204 8.7.3 TheWalkDimensioninQEG . . . . . . . . . . . . . . . . 206 8.7.4 TheHausdorffDimensioninQEG . . . . . . . . . . . . . 206 8.7.5 RelationsBetweenDimensions . . . . . . . . . . . . . . . 207 8.8 TheRGRunningofD andD . . . . . . . . . . . . . . . . . . . 207 s w 8.9 MatchingtheSpectralDimensionsofQEGandCDT . . . . . . . . 210 8.10 AsymptoticSafetyinCosmology . . . . . . . . . . . . . . . . . . 213 8.10.1 RGImprovedEinsteinEquations . . . . . . . . . . . . . . 214 8.10.2 SolvingtheRGImprovedEinsteinEquations . . . . . . . . 214 8.10.3 InflationintheFixed-PointRegime . . . . . . . . . . . . . 215 8.10.4 EntropyandtheRenormalizationGroup . . . . . . . . . . 217 8.10.5 PrimordialEntropyGeneration . . . . . . . . . . . . . . . 219 8.10.6 EntropyProductionforRGTrajectoryRealizedbyNature . 221 8.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 9 HolographyforInflationaryCosmology . . . . . . . . . . . . . . . . 227 PaulMcFadden 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 9.2 Domain-WallsandCosmologies. . . . . . . . . . . . . . . . . . . 230 9.2.1 DefiningthePerturbations . . . . . . . . . . . . . . . . . . 230 9.2.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 232 9.2.3 TheDomain-Wall/CosmologyCorrespondence . . . . . . . 234 9.2.4 CosmologicalPowerSpectra . . . . . . . . . . . . . . . . 236 9.3 HolographyforCosmology . . . . . . . . . . . . . . . . . . . . . 237 9.3.1 BackgroundSolutions . . . . . . . . . . . . . . . . . . . . 238 9.3.2 BasicsofHolography . . . . . . . . . . . . . . . . . . . . 238 9.3.3 HamiltonianHolographicRenormalisation . . . . . . . . . 240 9.3.4 TheStressTensor2-PointFunction . . . . . . . . . . . . . 243 9.3.5 HolographicAnalysis . . . . . . . . . . . . . . . . . . . . 244 9.3.6 HolographicFormulaeforthePowerSpectra . . . . . . . . 249 9.4 HolographicPhenomenologyforCosmology . . . . . . . . . . . . 250 9.4.1 APrototypeDualQFT. . . . . . . . . . . . . . . . . . . . 251 9.4.2 CalculatingtheHolographicPowerSpectra . . . . . . . . . 252 9.5 ConfrontingObservations . . . . . . . . . . . . . . . . . . . . . . 257 9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265