Dynamics, Information and Complexity in Quantum Systems Theoretical and Mathematical Physics The series founded in 1975 and formerly (until 2005) entitled Texts and Monographs in Physics (TMP) publishes high-level monographs in theoretical and mathematical physics.ThechangeoftitletoTheoreticalandMathematicalPhysics(TMP)signalsthat theseriesisasuitablepublicationplatformforboththemathematicalandthetheoretical physicist.Thewiderscopeoftheseriesisreflectedbythecompositionoftheeditorial board,comprisingbothphysicistsandmathematicians. Thebooks,writteninadidacticstyleandcontainingacertainamountofelementary background material, bridge the gap between advanced textbooks and research mono- graphs. They can thus serve as basis for advanced studies, not only for lectures and seminarsatgraduatelevel,butalsoforscientistsenteringafieldofresearch. EditorialBoard W.Beiglbo¨ck,InstituteofAppliedMathematics,UniversityofHeidelberg,Germany J.-P.Eckmann,DepartmentofTheoreticalPhysics,UniversityofGeneva,Switzerland H.Grosse,InstituteofTheoreticalPhysics,UniversityofVienna,Austria M.Loss,SchoolofMathematics,GeorgiaInstituteofTechnology,Atlanta,GA,USA S.Smirnov,MathematicsSection,UniversityofGeneva,Switzerland L.Takhtajan,DepartmentofMathematics,StonyBrookUniversity,NY,USA J.Yngvason,InstituteofTheoreticalPhysics,UniversityofVienna,Austria Forfurthervolumes: http://www.springer.com/series/720 Fabio Benatti Dynamics, Information and Complexity in Quantum Systems 123 Dr.FabioBenatti Universita` Trieste Dipto.FisicaTeorica StradaCostiera,11 34014Trieste Miramare Italy [email protected] ISBN978-1-4020-9305-0 e-ISBN978-1-4020-9306-7 DOI10.1007/978-1-4020-9306-7 LibraryofCongressControlNumber:2008937916 (cid:2)c SpringerScience+BusinessMediaB.V.2009 Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmitted inanyformorbyanymeans,electronic,mechanical,photocopying,microfilming,recording orotherwise,withoutwrittenpermissionfromthePublisher,withtheexception ofanymaterialsuppliedspecificallyforthepurposeofbeingentered andexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com To Heide, for her scholarship, for her friendship Preface The aim of this book is to offer a self-consistent overview of a series of is- sues relating entropy, information and dynamics in classical and quantum physics. My personal point of view regarding these matters is the result of what I had the good fortune to learn in the course of the years from various scientists: Heide Narnhofer in the first place, who introduced me to quan- tum dynamical entropies and was a precious guide ever since, then Robert Alicki, Mark Fannes, Giancarlo Ghirardi, Andreas Knauf, John Lewis, Ge- offrey Sewell, Franco Strocchi, Walter Thirring, Armin Uhlmann. To me, all of them have been a constant example of rigorous mathematics and physical intuition jointly at work. Last but not least, my deep gratitude goes to my family and to the many friends on whom I could always count for support and encouragement with a special thought for Traude and Wolfgang Georgiades. Trieste, 6 August 2008 Fabio Benatti VII Contents 1 Introduction.............................................. 1 Part I Classical Dynamical Systems 2 Classical Dynamics and Ergodic Theory .................. 9 2.1 Classical Dynamical Systems............................. 10 2.1.1 Shift Dynamical Systems .......................... 20 2.2 Symbolic Dynamics..................................... 25 2.2.1 Algebraic Formulations............................ 29 2.2.2 Conditional Probabilities and Expectations .......... 34 2.2.3 Dynamical Shifts and Classical Spin Chains.......... 37 2.3 Ergodicity and Mixing .................................. 40 2.3.1 K-Systems ...................................... 49 2.3.2 Ergodicity and Convexity ......................... 54 2.4 Information and Entropy ................................ 56 2.4.1 Transmission Channels............................ 57 2.4.2 Stationary Information Sources .................... 59 2.4.3 Shannon Entropy................................. 61 2.4.4 Conditional Entropy .............................. 63 2.4.5 Mutual Information............................... 67 3 Dynamical Entropy and Information...................... 71 3.1 Dynamical Entropy ..................................... 71 3.1.1 Entropic K-systems .............................. 80 3.2 Codes and Shannon Theorems ........................... 86 3.2.1 Source Compression .............................. 90 3.2.2 Channel Capacity ................................ 98 4 Algorithmic Complexity .................................. 105 4.1 Effective Descriptions ................................... 106 4.1.1 Classical Turing Machines ......................... 108 4.1.2 Kolmogorov Complexity........................... 113 4.2 Algorithmic Complexity and Entropy Rate ................ 122 4.3 Prefix Algorithmic Complexity ........................... 127 IX X Contents Part II Quantum Dynamical Systems 5 Quantum Mechanics of Finite Degrees of Freedom........ 139 5.1 Hilbert Space and Operator Algebras ..................... 139 5.2 C∗ Algebras ........................................... 143 5.2.1 Positive Operators................................ 148 5.2.2 Positive and Completely Positive Maps.............. 157 5.3 von Neumann Algebras.................................. 166 5.3.1 States and GNS Representation.................... 170 5.3.2 C∗ and von Neumann Abelian algebras ............. 173 5.4 Quantum Systems with Finite Degrees of Freedom.......... 178 5.5 Quantum States........................................ 190 5.5.1 States in the Algebraic Approach................... 208 5.5.2 Density Matrices and von Neumann Entropy......... 213 5.5.3 Composite Systems............................... 218 5.5.4 Entangled States ................................. 222 5.6 Dynamics and State-Transformations ..................... 227 5.6.1 Quantum Operations ............................. 236 5.6.2 Open Quantum Dynamics ......................... 241 5.6.3 Quantum Dynamical Semigroups ................... 247 5.6.4 Physical Operations and Positive Maps.............. 251 6 Quantum Information Theory ............................ 255 6.1 Quantum Information Theory............................ 255 6.2 Bipartite Entanglement ................................. 261 6.3 Relative Entropy ....................................... 287 6.3.1 Holevo’s Bound and the Entropy of a Subalgebra..... 294 6.3.2 Entropy of a Subalgebra and Entanglement of Formation....................................... 302 7 Quantum Mechanics of Infinite Degrees of Freedom ...... 317 7.1 Observables, States and Dynamics........................ 323 7.1.1 Bosons and Fermions ............................. 325 7.1.2 GNS Representation and Dynamics................. 335 7.1.3 Quantum Ergodicity and Mixing ................... 341 7.1.4 Algebraic Quantum K-Systems .................... 356 7.1.5 Quantum Spin Chains ............................ 362 7.2 von Neumann Entropy Rate ............................. 376 7.3 Quantum Spin Chains as Quantum Sources................ 381 7.3.1 Quantum Compression Theorems................... 383 7.3.2 Quantum Capacities .............................. 399 Contents XI Part III Quantum Dynamical Entropies and Complexities 8 Quantum Dynamical Entropies ........................... 411 8.1 CNT Entropy: Decompositions of States .................. 413 8.1.1 CNT Entropy: Quasi-Local Algebras................ 429 8.1.2 CNT Entropy: Stationary Couplings................ 433 8.1.3 CNT entropy: Applications........................ 436 8.1.4 Entropic Quantum K-systems ..................... 443 8.2 AFL Entropy: OPUs.................................... 451 8.2.1 Quantum Symbolic Models and AFL Entropy........ 452 8.2.2 AFL Entropy: Interpretation....................... 455 8.2.3 AFL-Entropy: Applications ........................ 457 8.2.4 AFL Entropy and Quantum Channel Capacities...... 475 9 Quantum Algorithmic Complexities ...................... 483 9.1 Effective Quantum Descriptions .......................... 484 9.1.1 Effective Descriptions by qubit Strings .............. 485 9.1.2 Quantum Turing Machines ........................ 486 9.2 qubit Quantum Complexity .............................. 494 9.2.1 Quantum Brudno’s Theorem....................... 497 9.3 cbit Quantum Complexity ............................... 506 References.................................................... 517 Index......................................................... 527 1 Introduction Thisbookfocussesuponquantumdynamicsfromvariouspointsofviewwhich areconnectedbythenotionofdynamicalentropyasameasureofinformation production during the course of time. For classical dynamical systems, the notion of dynamical entropy was in- troduced by Kolmogorov and developed by Sinai (KS entropy) and provided a link among different fields of mathematics and physics. In fact, in the light of the first theorem of Shannon, the KS entropy gives the maximal com- pression rate of the information emitted by ergodic information sources. A theorem of Pesin relates it to the positive Lyapounov exponents and thus to the exponential amplification of initial small errors, in a word to classical chaos. Finally, a theorem of Brudno links the KS entropy to the compress- ibility of classical trajectories by means of computer programs, namely to their algorithmic complexity, a notion introduced, independently and almost simultaneously by Kolmogorov, Solomonoff and Chaitin. In a previous book by the author, the notion of quantum dynamical en- tropyelaboratedbyA.Connes,H.NarnhoferandW.Thirring(CNTentropy) waspresentedwithinthecontextofquantumergodicityandchaos.TheCNT entropy is a particular proposal of how the KS entropy might be extended from classical to quantum dynamical systems. AftertheappearanceoftheCNTentropy,otherproposalsofquantumdy- namicalentropiesappearedwhichingeneralassigndifferententropyproduc- tions to the same quantum dynamics. The basic reason is that each proposal is built according to a different view about what information in quantum systems should mean. Concretely, it is a general fact that, in order to gain information about a system and its time-evolution, one has to observeit and aquantumfactthatobservationsmaybeinvasiveandperturbing.Shouldthis fact be considered inescapable and thus incorporated in any good quantum dynamical entropy or, rather, should it be avoided as a source of spurious effects that have nothing to do with the actual quantum dynamics? This is an unavoidable question and, based on the possible answers, one is led to different notions of quantum dynamical entropies. These will be sensitive to different aspects of the quantum dynamics and thus, not unex- pectedly, not equivalent: the real issue is which these aspects are and what kind of informational meaning they do posses. F.Benatti,Dynamics, Information and Complexity in Quantum Systems, 1 TheoreticalandMathematicalPhysics,DOI10.1007/978-1-4020-9306-7 1, (cid:2)c SpringerScience+BusinessMediaB.V.2009