ebook img

Quantum Decoherence Scaling with Bath Size: Importance of Dynamics, Connectivity, and Randomness PDF

1.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Decoherence Scaling with Bath Size: Importance of Dynamics, Connectivity, and Randomness

Quantum Decoherence Scaling withBath Size: Importance ofDynamics, Connectivity, andRandomness Fengping Jin Institute for Advanced Simulation, Ju¨lich Supercomputing Centre, Research Centre Ju¨lich, D-52425 Ju¨lich, Germany Kristel Michielsen Institute for Advanced Simulation, Ju¨lich Supercomputing Centre, Research Centre Ju¨lich, D-52425 Ju¨lich, Germany and RWTH Aachen University, D-52056 Aachen, Germany Mark Novotny 3 DepartmentofPhysicsandAstronomy,MississippiStateUniversity,MississippiState,MS39762-5167, USAand 1 HPC2 CenterforComputationalSciences,MississippiStateUniversity,MississippiState,MS39762-5167, USA 0 2 Seiji Miyashita n Department of Physics, Graduate School of Science, a J University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan and CREST, JST, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan 1 ] Shengjun Yuan h Institute for Molecules and Materials, p Radboud University of Nijmegen, - NL-6525AJ Nijmegen, The Netherlands t n a Hans De Raedt u Department of Applied Physics, Zernike Institute for Advanced Materials, q [ University of Groningen, Nijenborgh 4, NL-9747AG Groningen, The Netherlands (Dated:December11,2013) 1 v The decoherence of a quantum system S coupled to a quantum environment E is considered. For states 7 chosenuniformlyatrandomfromtheunithypersphereintheHilbertspaceoftheclosedsystemS+Ewederive 7 ascalingrelationshipforthesumoftheoff-diagonalelementsofthereduceddensitymatrixofSasafunction 0 of the size DE of the Hilbert space of E. This sum decreases as 1/√DE as long as DE 1. This scaling ≫ 0 predictionistestedbyperforminglarge-scalesimulationswhichsolvethetime-dependentSchro¨dingerequation . foraringofspin-1/2particles,fourofthembelongingtoSandtheotherstoE.Providedthatthetimeevolution 1 drivesthewholesystem fromtheinitialstatetowardastatewhich hassimilarproperties asstatesbelonging 0 totheclassofquantumstatesforwhichwederivedthescalingrelationship,thescalingpredictionholds. For 3 systemswhichdonotexhibitthisfeature,itisshownthatincreasingthecomplexity(intermsofconnections) 1 oftheenvironmentorintroducingasmallamountofrandomnessintheinteractionsintheenvironmentsuffices : v toobservethepredictedscalingbehavior. i X PACSnumbers:03.65.Yz,75.10.Jm,75.10.Nr,05.45.Pq r a I. INTRODUCTION quantumsystemreachesthermalequilibriumandhowthiscan bederivedfromdynamicallaws. On the one hand there exists a variety of studies explor- Decoherence of a quantum system S interacting with a ingthemicrocanonicalthermalizationinanisolatedquantum quantum environment E is of importance for two reasons. system [3–6]. On the other hand there exist various studies First, decoherence of S is the primary requirement for S to investigatingtheprocessofcanonicalthermalizationofasys- relaxtoastatedescribedbyacanonicalensembleatacertain tem coupled to a (much)larger system [3, 7–13] and of two temperature[1]. Second,decoherenceisarguablythelargest finiteidenticalquantumsystemspreparedatdifferenttemper- impedimentforpractical,realizablequantumcomputers[2]. atures[14,15]. The large interest in technological areas like spintron- In previous work [16, 17], we numerically demonstrated ics, quantum computing and quantum information process- thataquantumsysteminteractingwithanenvironmentathigh ing have stimulated the theoretical research of quantum dy- temperaturerelaxesto a state describedby the canonicalen- namics in open and closed interactingsystems. Besides this semble. In thispaperwe focusoninvestigatingthe dynamic moreapplicationdriveninteresttherepersiststhefundamental propertiesof the decoherence of a quantum system S, being andstillunansweredquestionunderwhichconditionsafinite a subsystem of the whole system S+E. We do this both 2 witha theoreticalpredictionandbysimulatingthedynamics indetailthespin-1/2Hamiltonianswehavesimulatedtopro- ofarelativelylargesystemS+E ofspin-1/2particlesusing videacasestudyforthisscaling. a time-dependentSchro¨dinger equation (TDSE) solver [18]. Inparticular,weinvestigatethescalingofthedegreeofdeco- herence of S with the size of E, keeping the size of S fixed. A. Timeevolution BasedonsimilarargumentsasgiveninRef.[19],wefindthat the degree of decoherence of S decreases as 1/√DE, where ApurestateofthewholesystemS+E evolvesintimeac- DE isthedimensionoftheHilbertspaceoftheenvironmentif cordingto(inunitsofh¯ =1) the state of thewhole system ischosenuniformlyat random fromtheunithypersphereintheHilbertspace. Inthispaper, Y (t) =e−itH Y (0) =(cid:229)DS (cid:229)DE c(i,p,t) i,p , (2) we denote states chosen uniformly at random from the unit | i | i | i i=1p=1 hypersphereintheHilbertspaceofthewholesystemby“X” where the set of states i,p denotesa complete set of or- andoftheenvironmentby“Y”. {| i} thonormalstatesinsomechosenbasis,andD andD arethe Wealsoaddressthequestionunderwhatcircumstancesthe S E dimensionsof theHilbertspacesof thesystem andthe envi- wholesystemevolvestoastatewhichhasthesamedegreeof ronment, respectively. We assume that D and D are both decoherence as a state “X”. In particular we study the case S E finite. in which the initial state of S+E is a direct product of the The spin Hamiltonian H models a system with N spin- state ofSandastate“Y”ofE. Iftheinitialstateofthe S whole|↑s↓y↑s↓teimS+Eisslightlydifferentfromagivenstate“X”, 1/2particlesandanenvironmentwithNE spin-1/2particles. the dynamicsmay drivethe wholesystem into a state which Thus,DS=2NS andDE =2NE. ThewholesystemS+E con- tainsN=N +N spin-1/2particlesandthedimensionofits is very different from the given state “X”, but which is of a S E Hilbert space is D=D D . In our simulations we use the similartype.Weinvestigatethroughoursimulationswhenthe S E spin-up – spin-downbasis. Numerically, the real-time prop- dynamicsplaysanimportantroleinthedecoherenceinthatit agation by e itH is carried out by means of the Chebyshev candriveS+Etoastate“X”byintroducingsmallworldbond − polynomialalgorithm[22–25],therebysolvingtheTDSEfor connectionsinE and/orbetweenSandE andbyintroducing the whole system starting from the initial state Y (0) . This randomnessintheinteractionstrengthsoftheenvironment. | i algorithm yields results that are very accurate (close to ma- The paperis organizedas follows. In Section II our theo- chineprecision),independentofthetimestepused[18]. reticalresultsforthescalingofthedecoherenceofSarepre- sented, together with details of the one-dimensional ring of spin-1/2particleswhichwesimulatetobetterunderstandthe B. Computationalaspects scalingprediction. SectionsIII-Vcontainresultsfortheone- dimensionalringsunderstudy.Inparticularwelookattheef- Computer memory and CPU time severely limit the sizes fectofaddingadditionalbonds(SmallWorldBonds,SWBs) of the quantumsystems that can be simulated. The required betweenthesystemandenvironmentspinsand/orbetweenen- CPU timeismainlydeterminedbythenumberofoperations vironmentspins only (Section IV) and of randomnessin the tobeperformedonthespin-1/2particles.TheCPUtimedoes interaction strengths of the Hamiltonian of the environment notputahardlimitonthesimulation. However,thememory (Section V). Section VI contains our conclusions and a dis- of the computer does severely limit which system sizes can cussionofourresults. be calculated. The state Y of a N-spin-1/2 system is rep- resented by a complex-va|luied vector of length D=2N. In viewofthepotentiallylargenumberofarithmeticoperations, II. THEORY,MODEL,ANDMETHODS it is advisable to use 13 - 15 digit floating-point arithmetic (correspondingto8bytesforarealnumber). Thus,torepre- Thetimeevolutionofaclosedquantumsystemisgoverned sentastateofthequantumsystemofN spin-1/2particleson bythetime-dependentSchro¨dingerequation(TDSE)[20,21]. a conventionaldigitalcomputer,we needa least 2N+4 bytes. If theinitialdensitymatrix ofan isolatedquantumsystem is Hence, the amountof memory that is required to simulate a non-diagonal then, according to the time evolution dictated quantumsystemwithNspin-1/2particlesincreasesexponen- by the TDSE, it remains non-diagonal. Therefore, in order tiallywith N. Forexample,forN =24(N =36)we needat to decohere the system S, it is necessary to have the system least 256 MB (1 TB) of memory to store a single arbitrary S interact with an environmentE, also called a heat bath or state Y . Inpracticeweneedthreevectors,memoryforcom- spinbathiftheenvironmentiscomposedofspins. Thus,the | i municationbuffers,localvariablesandthecodeitself. HamiltonianofthewholesystemS+E takestheform Theelementaryoperationsperformedbythecomputational kernelareoftheform Y U Y whereU isasparseuni- H=H +H +H , (1) S E SE | i← | i tarymatrix with a verycomplicatedstructure(relativeto the where H and H are the system and environmentHamilto- computationalbasis). Inherenttotheproblemathandisthat S E nian respectively, and H describes the interaction between eachoperationU affectsallelementsofthestatevector Y in SE | i thesystemandenvironment.Inwhatfollows,wefirstdescribe anontrivialmanner.Thistranslatesintoacomplicatedscheme thegeneraltheorythatleadstothescalingofthedecoherence foraccessingmemory,whichinturnrequiresa sophisticated of the system S with the size of E and S. We then describe MPIcommunicationscheme[26]. 3 C. Reduceddensitymatrix matrix r in the representationthat diagonalizesHS. Clearly, s (t)isaglobalmeasureforthesizeoftheoff-diagonalterms ofthereduceddensitymatrixintherepresentationthatdiago- The state of the quantumsystem S is described by the re- e duceddensitymatrix nalizesHS. Ifs (t)=0thesystemisinastateoffulldecoher- ence(relativetotherepresentationthatdiagonalizesH ). S rˆ(t) Tr r (t), (3) E ≡ wherer (t)isthedensitymatrixofthewholesystemS+E at D. Scalingpropertyofs timet andTr denotesthetraceoverthedegreesoffreedom E of the environment. In terms of the expansion coefficients Wecanproveascalingpropertyofs byassumingthatthe c(i,p,t), thematrixelement(i,j) ofthereduceddensityma- final state of the whole system is a state “X”, a state that is trixreads pickeduniformlyatrandomfromtheunithypersphereinthe Hilbertspace. Thewavefunctionofthewholesystemreads, rˆij(t)=TrEp(cid:229)D=E1q(cid:229)D=E1c∗(i,q,t)c(j,p,t)|j,pihi,q| Y =(cid:229)DS (cid:229)DE C E(S) E(E) , (6) | i i,p i p (cid:229)DE i=1p=1 (cid:12) E(cid:12) E = c∗(i,p,t)c(j,p,t). (4) (cid:12) (cid:12) (cid:12) (cid:12) p=1 where E(S) E(E) isthesetofeigenvectorsofH i p S Wecharacterizethedegreeofdecoherenceofthesystemby (HE), ann(cid:12)d theEorea(cid:16)lna(cid:12)nd imEaog(cid:17)inary parts of Ci,p are real ran- (cid:12) (cid:12) dom var(cid:12)iables. The(cid:12)derivation of the scaling behavior fol- lows Ref. [19]. In particular Eqs. (A8), (A12) and (A23) s (t)= D(cid:229)S−1 (cid:229)DS r (t) 2, (5) of Ref. [19] are used. We introduce the following short- ij v hand notation for the sum over the off-diagonal elements, u i=1 j=i+1 ut (cid:12)(cid:12)e (cid:12)(cid:12) (cid:229) Di=Sjk ij=(cid:229) Di=S1(cid:229) Dj=S1(1−d ij)k ij foranyk ij,whered ij isthe wherer (t)isthematrixelement(i,j)ofthereduceddensity Kr6oneckerdeltafunction.Theexpectationvalueisgivenby ij e 2 E 2s 2 =E (cid:229)DS (cid:229)DE C C =(cid:229)DS (cid:229)DE E C C C C (cid:0) (cid:1)=(cid:229)DSi6=(cid:229)Dj(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)Ep=1 i∗,1p−j,dp(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)p,p′ E i6=Cji∗,ppC=1j,,pp′C=i1,p′C(cid:16)∗j,pi∗′,p+j,dpp,ip,p′E′ ∗j,Cp′i∗,(cid:17)pCj,pCi,p′C∗j,p′ i=j p=1,p=1 =i(cid:229)D6=6 Sjp(cid:229)D=E1E′(cid:16)(cid:12)C(cid:16)i,(cid:0)p(cid:12)2(cid:12)Cj,p(cid:12)2(cid:1)(cid:17)=(cid:16)i(cid:229)D6=Sjp(cid:229)D=E1DSDE(D1(cid:17)SDE+1) =(cid:16) DDSDSE−+11 = D1E(cid:17)−(cid:17)+D1DS1S , (7) (cid:12) (cid:12) (cid:12) (cid:12) where E() denotesthe expectationvaluewith respectto the ForfixedD >1, itfollowsfromEq.(7) thattheenviron- S · probability distribution of the random variablesC . Equa- mentdoesnothavetobeverylargeforEq.(8)tohold,which i,p tion (7) does not require any condition on the Hamiltonian is in agreement with Ref. [27]. Nevertheless, the existence Eq.(1). Forexample,ifH iscomposedoftwo ormoreen- ofanenvironmentiscrucial. Ifthereisnoenvironment,then E vironmentsthatdonotcoupletoeachother,butonlyinteract thes approachestoaconstant(seeAppendixA),evenifthe with the system, in Eq. (7) D is the productof the sizes of wholesystemisinitiallyinastate“X”. E theHilbertspacesofalltheenvironments.Inaddition,Eq.(7) doesnotimposeanyrequirementonthegeometry. FromEq. (7) it followsthatforanyfixed valueof D >1 S E. Modelandmethod andD 1,s scalesas E ≫ FortestingthepredictedscalingofEq.(8)wesimulatesys- 1 1 D 1 1 s E(2s 2)= S− . (8) tems of spin-1/2 particles. For studying the time evolution ≈ √2q √2rDSDE+1 ∼ √2DE of the whole system S+E, we consider a general quantum spin-1/2modeldefinedbytheHamiltonianofEq.(1)where Therefore,ifthesizeofthesystemSisfixed(whichisthecase consideredinthispaper),s decreasesas1/√D forlargeD . HlaergneceN,Efo.raspin-1/2systems shoulddecreaseEas2−NE/2foEr HS=−Ni(cid:229)S=−11j=(cid:229)NiS+1a =(cid:229) x.y,zJia,jSia Saj, (9) 4 We will see that these two cases show very different scal- ing properties of the decoherence depending on the initial state.Wealsoinvestigatetheeffectsofrandomlyaddingsmall world bonds (SWBs) between spins in the system and envi- ronmentandbetweenspinsintheenvironment(seeFig.1). The initial state of the whole system S+E is prepared in twodifferentways,namely: “X”: We generate Gaussian random num- • bers a(j,p),b(j,p) and set c(j,p,t = 0) = FIG. 1. (Color online) An example of a spin system used in the { } (a(j,p) + ib(j,p))/ (cid:229) (a2(j,p)+b2(j,p)). simulations. TheNS=4systemspin-1/2particlesarecoloredlight j,p gray(cyan),andtheNE=18environmentspin-1/2particlesarecol- Clearly this procedure gqenerates a point on the oreddarkgray(red). Thethinblacksegmentsshowtheconnections hypersphereintheD-dimensionalHilbertspace. Alter- foraone-dimensional ring,whicharetheonlybonds(interactions) natively,wegeneratepointsin thehypercubebyusing presentincaseIandII(seetext).Thethick(greenandwhite)bonds uniform random numbers in the interval [ 1,1]. Our show SWBsinHSE. Thisparticular example shows a spin system general conclusions do not depend on th−e procedure with K =2, where K denotes the maximum number of subsystem used(resultsnotshown). spinsthatareconnectedviaSWBswithoneenvironmentspin(thick white lines, see also Section IV). The medium thick (blue) bonds showSWBsinHE. UDUDY: The initial state of the whole system is a • product state of the system and environment. In this paper (N =4), we confine the discussion to the state S H = N(cid:229)E−1 (cid:229)NE (cid:229) W a Ia Ia , (10) UDUDY,whichmeansthatthefirst,second,third,and E − i=1 j=i+1a =x,y,z i,j i j fourthspinareintheup,down,up,anddownstatere- spectively,andthestateoftheremainingspinsisa“Y” H = (cid:229)NS (cid:229)NE (cid:229) D a Sa Ia . (11) stateinthe(D/24)-dimensionalHilbertspace. The“Y” SE −i=1j=1a =x,y,z i,j i j stateoftheenvironmentispreparedinthesamewayas the“X”stateofthewholesystem. Here,SandIdenotethespin-1/2operatorsofthespinsofthe system and the environment,respectively(we use unitssuch a a that h¯ and k are one). The spin componentsS and I are B i j related to the Pauli spin matrices, for example Six is a direct III. SCALINGANALYSISOFs productofidentitymatricesandthePaulispinmatrix 1s x= 2 0 1 1 inpositioniofthedirectproductwith1 i N . All simulations are carried out for a system S consisting 2(cid:18)1 0 (cid:19) ≤ ≤ S of four spins (NS = 4) coupled to an environment E with Forthegeometryofthewholesystem,wefocusontheone- the number of spins N ranging from 2 to 30. The interac- E dimensionalringconsistingofasystemwithN =4spin-1/2 a S tion strengths J with 1 i N 1 are always fixed to particlesandanenvironmentwithNE spin-1/2particles, see J= 0.15. Fori,ci+as1eIallno≤n-ze≤roW Sa−andD a arerandomly Fig. 1. Past simulations have shown that a high connectiv- − i,j i,j generatedfromtherange[ 0.2,0.2]. ForcaseIIallnon-zero ity spin-glass type of environment is extremely efficient to W a and D a are equal to−J = 0.15 (isotropic Heisenberg decohere a system [16, 28–30], so we may expect that the i,j i,j − model). one-dimensionalring is one of the most difficult geometries toobtaindecoherenceinshorttimes. We assume that the spin-spin interaction strengths of the a system S are isotropic, J = J and that only the nearest- i,j neighborinteractionstrengthsW a andD a arenon-zero.Note A. Verificationofscaling:casesIandIIwith“X” i,j i,j thatforaringthereareonlytwobondswithstrengthD a con- i,j nectingSandE. Wedistinguishtwocases: We corroboratethe scalingpropertyofEq.(8)bynumeri- callysimulatingthequantumspinsystem(seeEq.(9)through CaseI:Thenon-zerovaluesofW a andD a aregener- (11)). Ifwechoosetheinitialstateofthewholesystemtobe • i,j i,j ated uniformlyat randomfrom the range [ W ,W ] and an“X”state,thenduringthetimeevolutionthewholesystem [ D ,D ],respectively. − will remain in the state “X”. Hence, the condition to derive − Eq. (8) are fulfilled. Fig. 2 demonstrates that the numerical Case II: All non-zero values of the model parameters results for both cases I and II agree with Eq. (8). In par- • areidentical,W a =JandD a =J. Thiscorrespondsto ticular the insets in Fig. 2 show that for both cases I and II, i,j i,j a uniformisotropicHeisenbergmodelwith interaction ln(2s ) N /2,andthats scalesas1/√D evenifN =2 E E E ≈− strengthJ. andN =4(N <N ). S E S 5 100 100 10-1 10-1 10-1 10-3 10-1 10-3 10-5 10-5 2 10 20 30 2 10 20 30 10-2 NE 10-2 NE (t) (t) s s 10-3 10-3 10-4 10-4 0 200 400 600 800 1000 1200 1400 0 1000 2000 3000 4000 5000 6000 7000 8000 t t 100 10-1 FIG.3. Simulationresultsfor s (t)(seeEq.(5))for caseIfordif- 10-1 10-3 tfheerewnthsoilzeessyNste=mNisEU+D4UoDfYth(esewehteoxlet).syCsutermve.sfTrhoemitnoiptiatlosbtaottetoomf 10-5 correspond tosystemsizesranging fromN=6toN=34insteps 10-2 2 10N 20 30 of2. Theinsetshowsthetime-averagedvaluesofs (t)(pluses)asa (t) E functionofthesizeNEoftheenvironment.Thedataobeythescaling s propertyofEq.(8)(solidline). 10-3 10-4 100 10-1 0 200 400 600 800 1000 1200 1400 10-2 t 10-1 10-3 FIG. 2. Simulation results for s (t) (see Eq. (5)) for case I (top) 12 18 24 30 and case II (bottom) for different sizes N =NE+4 of the whole (t) NE system.Theinitialstateofthewholesystemis“X”(seetext).Curves s 10-2 fromtoptobottomcorrespondtosystemsizesrangingfromN=6 toN=34 instepsof 2. Theinsetsshow thetime-averagedvalues coofnsfi(rtm)in(pgluthseest)heaosreatifcuanlcptrioednicotfiotnheofsEizqe.(N8E)(osfoltihdeliennev).ironment, 10-3 0 200 400 600 800 1000 1200 1400 t B. Differentinitialconditions FIG.4. SameasFig.3forcaseIIinsteadofcaseI.Curvesfromtop tobottomcorrespondtosystemsizesrangingfromN=16toN=34 Weinvestigatetheeffectsofthedynamicsbypreparingthe instepsof2.Thesolidlineintheinsetisaguidetotheeyes. initialstateofthewholesystemsuchthatitisslightlydiffer- ent from “X”. The initial state of the whole system is set to UDUDY. IncontrasttoFig.2,wewillseethatthetwocasesI andIIbehavedifferently. 2. CaseIIandUDUDY We consider the case in which the whole system is de- 1. CaseIandUDUDY scribed by the isotropic Heisenbergmodel(Ja =W a = i,i+1 i,i+1 D a =J). In Fig. 4 we present simulation results for dif- i,i+1 In Fig. 3, we present the simulation results for case I, the ferentsystemsizesN=N +4rangingfrom16to34. From E couplings in the Hamiltonians H and H are chosen uni- Fig.4, itisseenthatthebehaviorforcaseIIistotallydiffer- E SE formlyatrandom. ThesizeN=N +4ofthewholesystem ent from that of case I (see Fig. 3). In particular, s (t) does E rangesfrom 6 to 34. An average overthe long-timestation- not scale with the dimension of the environment. From the ary steady-state values of s (t) still obeys the scaling prop- present numerical results, we cannot make any conclusions erty of Eq. (8), showing that s decreases as 1/√D , where aboutthelimitforlargeN . Howeverifs (t)approacheszero E E DE =2NE. IfNE ¥ ,s 0. Thissuggeststhatinthether- as NE ¥ (see the fifth column of Table I) it does so very → → → modynamicallimitthesystemSdecoherescompletely. slowly. 6 100 TABLEI.Thetimeaverageofs (t)inthestationaryregimeshown inFigs.2,3and4. prediction caseI caseII 10-1 NE ofEq.(8) UDUDY “X” UDUDY “X” s(t) 42 31..379078××1100−−11 31..471466××1100−−11 31..377257××1100−−11 31..373141××1100−−11 10-2 68 84..525749××1100−−22 84..853948××1100−−22 84..523862××1100−−22 84..429625××1100−−22 10 2.139×10−2 2.286×10−2 2.153×10−2 2.121×10−2 12 1.070×10−2 1.149×10−2 1.071×10−2 1.254×10−2 1.061×10−2 10-3 0 1000 2000 3000 4000 5000 6000 1146 52..364794××1100−−33 52..789656××1100−−33 52..365778××1100−−33 63..795967××1100−−33 52..364663××1100−−33 t 18 1.337×10−3 1.430×10−3 1.349×10−3 2.694×10−3 1.343×10−3 20 6.686×10−4 7.065×10−4 6.736×10−4 2.204×10−3 6.641×10−4 g2Fr2IeGae.nn5dd.Na(sCSho=eldo4rl.inoRen:elidtnhese)oilSnidiimtilaiunlleas:ttiatotheneirisens“iutXilat”ls(sfstoearetestei(sxtU)t).fDoUrcDaYse(IsefoerteNxt=); 22222468 3184....363147573289××××11110000−−−−4455 3194....570546052651××××11110000−−−−4455 3184....363157652481××××11110000−−−−4455 1111....975402989291××××11110000−−−−3333 3184....362145877836××××11110000−−−−4455 30 2.089×10−5 2.338×10−5 2.107×10−5 1.379×10−3 2.104×10−5 10-1 10-2 10-3 canunderstandthe verydifferentbehaviorof cases IandII, Ds 10-4 seeFigs.3and4,byconsideringthestationarystatesthatare obtained.Figure5showsthatthefinalvaluesofs (t)forcaseI 10-5 are very close for both initial states “X” andUDUDY. This suggests that the final stationary state in case I has proper- ties similar to those of a state “X”, and hence case I obeys 10-6 0 5 10 15 20 25 30 thescalingpropertyofEq.(8)toagoodapproximation. The N time-averagedvaluesof s (t)in Figs. 2, 3 and4, denotedby E s , are listed in Table I. From Table I, we see thatthe values of s for case II with an initial state UDUDY are very dif- FIG. 6. (Color online) Difference D s between the time-averaged ferent from those with an initial state “X”, and do not show values of s (t) for the initial stateUDUDY and “X” of the whole the scaling property of Eq. (8). Thus, the numerical results system(seeTableI)asafunctionofthesizeoftheenvironmentN . E suggestthatthe initialstate andthe randomnessof the inter- Pluses: caseI;circles: caseII.Thedottedlineisalinear fittothe action strengths play a very important role in the dynamical data (pluses) for theUDUDY initial state, excluding thefirst three datapoints,resultinginD s =0.049/√DE. evolutionofthedecoherenceofasystemcoupledtoanenvi- ronment.Inparticular,forcaseII,startingfromastate“X”the time-averagedvaluesofs (t) scale as s 1/√D , butsuch E ≈ C. Computationaleffort scalingisnotobservedforstartingfromastateUDUDY. Inthispaper,thelargestnumberofspinsthatwesimulated FromTableI,itisseenthatthevaluesofs forcaseIwith is N =34. Using the Chebyshev polynomial algorithm and theinitialstateUDUDY arealwaysslightlylargerthanthose a large time step (t 10p ), the N =34 simulation for the withtheinitialstate“X”. Therefore,itisinterestingtoexam- ≈ bottomcurvesinFig.2(uptoatimet 600)tookabout0.3 ine the differenceD s between the values of s for the initial ≈ million core hours on 16384 BG/P (IBM Blue Gene P) pro- statesUDUDY and “X”. Figure 6 shows that D s for case I cessors,using1024GBofmemory.Similarly,ittookabout4 (redpluses)alsoscalesas1/√D (dottedline),exceptforthe E millioncorehourstocompletetheN=34curveinFig.3(up firstthreedatapoints,whichisprobablyduetolargefluctua- toatimet 8000). tionsin thecalculationsforthesesmallsystem sizes. There- ≈ fore, the dynamics of case I will drive the system to a state “X”onlywhentheenvironmentapproachesinfinity. Figure6 D. Summary:initialstatedependence alsoshowsthatD s forcaseII(circles)isalmostconstantfor system sizes N rangingfrom 16 to 34. Hence, it is unlikely Foraninitialstate“X”ofthewholesystemthescalingofs , thatcaseIIwiththeinitialstateUDUDY willdecohere,even asgivenbyEq.(8),worksextremelywellforbothcaseIand if thesimulationscouldbe performedformuchlongertimes caseII,asseeninFig.2. WhentheinitialstateisUDUDY,we andforlargersystemsizes. 7 IV. CONNECTIVITY:RINGWITHSMALLWORLD nothaveadramaticeffectons (t)andhasverylittleeffectat BONDS earlytimes(seeFig.8a). Just as for case I, it is seen that adding a few SWBs ex- We investigate the effects of adding small world bonds clusively to HSE for a spin configuration with K =1 signif- (SWBs)totheHamiltoniansH or/andH forbothcaseIand icantly decreases the time to approach the steady state, and SE E caseII(seeFig.1). ToanalyzetheadditionofSWBstoHSE that the SWBs in HSE also lead to a decrease in s (t) for a we distinguishbetweenspinsystemswith K<2andK 2, fixed time even at early times (see Fig. 8b). For spin con- where K denotes the maximum number of subsystem s≥pins figurationswith K =2 case I and case II seem to havesimi- thatareconnectedviaSWBswithoneenvironmentspin. This lar decoherencepropertiesif SWBs are addedexclusivelyto distinctionismotivatedbythedistinctdecoherencecharacter- HSE,asseenbycomparingFig.7candFig.8c. However,con- istics forsystems with K <2 and K 2 for case I (see next nectinginadditioneachpairofnon-neighboringenvironment subsection). An exampleofa spin co≥nfiguartionwith K =2 spinsbyisotropicSWBsdrivesthecurvesveryfarawayfrom isshowninFig.1. Inparticular,weareinterestedinwhether thevalueofs (t)foraninitialstate“X”(seeFig.8d). systemswithSWBswillexhibitthesamescaling,andwhether theywilldecoherefromaninitialstatefasterthaneitherofthe cases studied thusfar. The additionof manySWBs changes C. Summary:SWBs thegraphfroma one-dimensionalringtoa graphwith equal bondlengthsthatcanonlybeembeddedinhighdimensions. AddingSWBstoH or/andtoH changestherateofde- SE E Theinitialstates arealwaysUDUDY. Furthermore,inorder coherenceasseenbytheapproachtotheasymptoticvaluefor nottochangetoomanyparameterssimultaneouslywestartall s (t). In case II,addingisotropicSWBs to H or H effec- SE E simulationsfromthesamestate“Y”oftheenvironment.Fur- tivelyalterssomespin-spincorrelationsleadingtoadecrease thermore,afterchoosingtherandomlocation(andcouplings in the steady-state value of s (t). However, this decrease is W a andD a forcaseI)ofthefirstSWBwepreservethisbond notsufficienttoreachthesteady-statevalueofs (t)thatcom- when adding additional SWBs. We will see that case I and plies with the predictionEq. (8). Addingisotropic SWBs to caseIIstillbehaveverydifferently. H andconnectinginadditioneachpairofnon-neighboring SE environmentspins byisotropic SWBs drivesthe curvesvery farawayfromthevalueofs (t)foraninitialstate “X”,even A. CaseIandSWBs muchfurtherawaythanthesteady-statevalueforaringwith- outSWBs. IncontrasttocaseIsystemswithK<2andK 2 Forinvestigatingtheuniversalityofthefinalvalueofs (t) donotbehavesignificantlydifferent. ≥ we add SWBs (randomcouplingsin the interval[ 0.2,0.2]) Comparing case II with case I for K < 2, we conclude − intheHamiltonianH or/andH forcaseI,andperformsim- that without introducing the randomness in the x, y, z com- SE E ulations for N =24 with N =4. From Fig. 7a, we see that ponentsofthespin-spincouplings,thedynamicscannotdrive S adding more and more SWBs to H speeds up the decoher- thesystemtodecoherenceiftheinitialstateisdifferentfrom E ence process and that the final value of s (t) corresponds to astate“X”. Increasingthecomplexityoftheenvironmentby theonegivenbyEq.(8). Asseenintheinset, addingSWBs addingisotropicSWBsbetweenallnon-neighboringenviron- to H has no noticeable effect on the early time behavior of mentspinsdoesnothelpinthisrespect,evenonthecontrary. E s (t). However,forcaseIandconfigurationswithK 2,increasing ≥ Adding SWBs exclusively to H speeds up the deco- thecomplexityoftheenvironmentbyaddingSWBsbetween SE herence process even further and even at early times clear allpairsofnon-neighboringenvironmentspinsallowsthedy- changes in s (t) can be observed (see Figs. 7b, c). For spin namicstodrivethesystemtodecoherence. configurations with K =1, s (t) reaches the value given by For both case I and case II, adding SWBs in HSE and HE Eq.(8)forsufficientlylongtimes,ascanbeseenfromFig.7b. separatelyspeedsup the decoherencein thatit evolvesmore However,forconfigurationswithK=2(seeFig.7c)orK>2 quickly to a stationary state. The asymptotic value for s (t) (results not shown) s (t) does not obey the scaling property isapproachedmuchfasterwhenaddingSWBstoHSE instead Eq. (8). Restoring this scaling property seems to require of HE, and the SWBs in HSE also affects (t) at early times. an environment that is much more complex than the one- Thus a random SWB coupling to the system via HSE is the dimensionaloneasindicatedbyFig.7dinwhichwepresent mosteffectivewaytodecreasethetimefordecoherence. simulation results for the case that SWBs between all non- neighboringenvironmentspinshavebeenadded. V. RANDOMNESSINTHEENVIRONMENT B. CaseIIandSWBs SectionIIIAshowsthatfortheinitialstate“X”thescaling predictedby Eq. (8) is confirmedboth for case I and case II For case II, isotropic SWBs are added to H or/and H . (see Fig. 2). However,sectionIIIB showsthatstarting from SE E From Fig. 8, it is clear that even for long times none of the theinitialstateUDUDY thisscalingisapproachedas1/√D E curvesapproachthe dotted horizontalline, the valueof s (t) for case I (see Figs. 3 and 6) but not for case II (see Figs. 4 foraninitialstate“X”. AddingSWBsexclusivelytoH does and6).SectionIVshowsthataddingSWBsincaseIIdoesnot E 8 100 100 (a) 100 (b) 100 10-1 10-1 10-1 10-2 (t) 10-1 (t) 10-3 s 10-2 0 10 20 30 40 50 s 10-2 0 10 20 30 40 50 10-3 10-3 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 t t 100 100 (c) 100 (d) 100 10-1 10-1 10-1 10-1 10-2 10-2 (t) 10-3 (t) 10-3 s 10-2 0 10 20 30 40 50 s 10-2 0 10 20 30 40 50 10-3 10-3 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 t t FIG.7. (Coloronline)Simulationresultsofs (t)forcaseIwithN=24andNS=4withSWBsadded. TheinitialstateisUDUDY. The dottedhorizontallinerepresentsthevalueofEq.(8).Redsolidline:ringwithoutSWBs.(a)RandomlyaddedSWBsbetweennon-neighboring environment spins. Greenlong-dashed line: oneSWB;orangedottedline: twoSWBs; purpleshort-dashed line: four SWBs; bluedotted- dashedline: eightSWBs. (b)RandomlyaddedSWBsbetweenthesystemandenvironmentspinssuchthatK=1. Greenlong-dashedline: oneSWB;orangedottedline: twoSWBs;purpleshort-dashedline: fourSWBs;bluedotted-dashedline: eightSWBs. (c)Randomlyadded SWBsbetweenthesystemandenvironmentspinssuchthatK=2.Greenlong-dashedline:twoSWBs;orangedottedline:fourSWBs;purple short-dashed line: sixSWBs; bluedotted-dashed line: eightSWBs. (d)Sameas(c)except thateachpairofnon-neighboring environment spinsisconnectedbyaSWB.Insets:timeevolutionforshorttimes. significantlychangethelong-timebehaviorofs (t)approach- inset of Fig. 9. The inset shows that even one randombond ingthepredictedvalueofEq.(8). Thereforethenaturalques- sufficestorecovertheasymptoticvalueEq.(8). Howeverthe tion to ask is how much randomness is required for s (t) to timescaletoreachtheasymptoticvalueofs canbecomeex- obeythescalingrelationEq.(8). Toanswerthisquestion,we tremelylong. Weleavethequestionofhowfasttheapproach startfromtheisotropicHeisenbergring(caseII)andreplace tothepredictedvalueofs isforfuturestudy. the interactionstrengthsof a fewrandomlychosenbondsby randomW a (seeEq.(10)). Forunderstandingthebehaviorofs (t)incaseIIwithran- i,j domness,weinvestigatetheindividualcomponentsofthere- Figure 9 presents the simulation results for s (t) by intro- duced density matrix r for the ring system. We study the ducing 1, 2, 4, 6 and 8 random bonds in the environment additionofone,two,uptoeightrandomlyreplacedbondsin Hamiltonian H of Eq. (10). The interaction strengths W a theenvironment.Recallthatoncethepositionforonerandom E i,j e of these randomly selected bonds are drawn randomly from bond is chosen, this is also one of the random bonds when a uniform distribution in [ 0.2,0.2]. Furthermore, the ran- therearetwoormorerandombonds. Similarly,thelocations − domlyselectedbondforthecasewith1randombondisalso oftherandompositionsfora largenumberofrandombonds arandombondforthecasewith2andmorerandomlychosen includethesamepositionsandstrengthsasforasmallernum- bonds, thereby not changingtoo many parametersat a time. berofrandombonds. Furthermore,thesameinitialstate“Y” Simulations up to time t =6000 show that introducing 4, 6 of the environment is chosen for all simulations. We stud- and8randombondsleadsthesystemtorelaxtothepredicted iedtheeffectofvaryingthepositionsoftherandomlychosen valueofs (seeEq.(8)).Fortimesuptot=6000theeffectof bonds and of different initial states “Y” for the environment oneortworandombondsisnotapparent.Thereforeforthese for a couple systems and did not find significant changes in twocasesweperformedextremelylongrunsasshowninthe ourobservations. 9 100 100 (a) 100 (b) 100 10-1 10-1 10-1 10-1 10-2 (t) 10-2 10-2 (t) 10-2 10-3 s 0 10 20 30 40 50 s 0 10 20 30 40 50 10-3 10-3 10-4 10-4 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 t t 100 100 (c) 100 (d) 100 10-1 10-1 10-1 10-1 10-2 (t) 10-2 10-3 (t) 10-2 10-2 s 0 10 20 30 40 50 s 0 10 20 30 40 50 10-3 10-3 10-4 10-4 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 t t FIG.8.(Coloronline)Simulationresultsofs (t)forcaseIIwithN=26andNS=4withisotropicSWBsadded.TheinitialstateisUDUDY. The dotted horizontal linerepresents the value of Eq. (8). Red solid line: ring without SWBs. (a) Randomly added SWBsbetween non- neighboringenvironmentspins.Greenlong-dashedline:twoSWBs;orangedottedline:fourSWBs;purpleshort-dashedline:sixSWBs;blue dotted-dashedline:eightSWBs.(b)RandomlychosenSWBsbetweenthesystemandenvironmentspinssuchthatK=1.Greenlong-dashed line: twoSWBs;orangedottedline: fourSWBs;purpleshort-dashedline: sixSWBs;bluedotted-dashedline: eightSWBs. (c)Randomly chosen SWBsbetween the system and environment spins such that K =2. Green long-dashed line: two SWBs; orange dotted line: four SWBs;purpleshort-dashedline: sixSWBs;bluedotted-dashedline: eightSWBs. (d)Sameas(c)exceptthateachpairofnon-neighboring environmentspinsisconnectedbyaSWB.Insets:timeevolutionforshorttimes. Figure 10 presents the results of the time evolution of the VI. CONCLUSIONSANDDISCUSSION absolute value r of the individual components of the re- ij | | duced density matrix. For completeness we show both the ThemaintheoreticalresultofthecurrentpaperisEq.(8)for diagonalcomponeentsandtheoff-diagonalcomponents. Fig- thedecoherenceofaquantumsystemScoupledtoaquantum ure 10 shows that most of the 120 off-diagonalcomponents environmentE. Forstudyingdecoherencewe examines (t), quicklyrelaxtoasmallvalue(114blacklinesinFig.10(b)- which is the square root of the sum of all the off-diagonal (e)). The slowest decaying r ij are plotted in red. There elements of the reduced density matrix r for S in the basis are six such components. In|the|steady state all |r ij| oscil- thatdiagonalizestheHamiltonianHSofthesystemS.Wefind late but have nearly the sameetime-averagedvalue, in agree- (seealsoEq.(8))that e mentwiththemean-field-typeargumentgiveninAppendixB. e Thus, only a few r ij are responsiblefor the lack of scaling s 1 1 1 , (12) of s in case II wh|en|starting from the initial stateUDUDY, ≈ √2DE (cid:18) −2DS(cid:19) andalsoforthelongtimesrequiredtoapproachthepredicted e wherethereduceddensitymatrixr forSisaD D matrix valueofEq. (8) ofs (t)in the case thatthere areoneor two S× S whilethedensitymatrixofthewholesystemS+E isaD D randombonds. × matrix with D=D D . Thus D does not have to be very S E Ee large in order for the predicted scaling to hold, in particular the scaling requiresD 1 D 1. In additionthe scaling E ≫ ≫ −S requiresthatS+E isdrivenfromaninitialwavefunctionto- ward a steady state whichis well describedby a state which wecalled“X”. 10 100 10-2 10-1 (a) (b) 10-1 10-3 ~r||ij1100--53 10-7 (t) 10-2 10-4 s 10000 50000 10-1 10-3 (c) (d) ~|ij10-3 r| 10-5 10-4 0 1000 2000 3000 4000 5000 6000 10-7 t FIG. 9. (Color online) Simulation results of s (t) obtained by se- 10-1 lectivelyreplacingisotropicspin-spininteractionsbyrandombonds. (e) (f) The size of the system and whole system are NS=4 and N =26, ~|ij10-3 respectively. TheinitialstateisUDUDY. Redsolidline: 1random r| 10-5 bond; greenlong-dashed line: 2randombonds; purpledottedline: 4 random bonds; orange short-dashed line: 6 random bonds; blue 10-7 0 2000 4000 6000 0 2000 4000 6000 dotted-dashed line: 8 random bonds. Inset: simulation results for t t oneandtworandombondsforlongtimes. FIG.10.(Coloronline)Timeevolutionofthecomponentsr ijofthe reduceddensitymatrixofthesystemwithN=26andNS=4. The initialstateisUDUDY. (a)CaseII. StartingfromcaseII, 1(b), 2 Wehaveperformedlarge-scalereal-timesimulationsofthe e time-dependentSchro¨dingerequationforNS spinsinthesys- (licn)e,s4:(ddi)a,g6on(ea)lacnodm8po(nf)enratsndormii ;broenddslianrees:inatrllod6ucsleodwilnyHdEec.aByilnuge temandNE spinsintheenvironment.Wehavesimulatedspin- componentsfor r ij foroner|and|ombond;blacklines:allother114 1/2systemswithN=NS+NE uptoN=34,allwithNS=4. off-diagonalcom|pon|ents r ij .e Startingfromastate“X”forS+E thesimulationsagreevery | | e wellwiththescalingpredictionEq.(12),asshowninFig.2. e In AppendixC we demonstratethatin this case notonlythe off-diagonalelementsofr obeyascalingrelationbutalsoits berequiredtoapproachthestate“Z”isduetoonlyafewoff- diagonalelementsobeyascalingrelation,althoughadifferent diagonalelements of r , as seen in Fig. 10. We find that the one. approachto the state “Z” canbe spedup byaddingrandom- e Thereforeaslongasthedynamicsdrivestheinitialstateto nesstoE (Figs.9ande10). astate“Z”whichhassimilarpropertiesas“X”thescalingre- What do our results say about the approach to the quan- lationEq.(12)shouldhold.Thenextstepistoexamineunder tumcanonicalensemble?Thecanonicalensembleisgivenby whatconditionsourtestquantummodelisdriventothestate the diagonalelements of the reduceddensity matrix r if the “Z”, andstudy the time scale neededto relaxfrom an initial off-diagonalelements(asmeasuredbys (t))canbeneglected statetothestate“Z”. Fortheone-dimensionalquantumspin- [1,17]. AslongasE hasafiniteHilbertspaceDE ourescaling 1/2ring we find that homogeneouscouplingsdo notlead to resultscan be usedto arguethatin a strictsense, thesystem an evolution to the state “Z” (Fig. 4), and hence the scaling willnotbeinthecanonicalstateunlessDE ¥ . However,if → as 1/√D is not observed. This conclusion is not modified the canonical distribution is to be a good approximation for E if some randomly chosen homogeneous small world bonds some temperatures T up to some chosen maximum energy areadded(Fig.8). Also systemswithrandomcouplingsand Ehold>0,thenthisrequiresthatexp( Ehold/kBT) s which − ≫ randomsmallworldbondsbetweensystemandenvironment givesforourspin-1/2systemkBT 2Ehold/[NEln(2)]. For ≫ spinssuchthatthemaximumnumberofsystemspinsthatin- thisargumenttoholdinthecanonicaldistributiontheenergies teractwithoneenvironmentspinistwoorlargerdonotevolve aretakentobepositivevaluesabovethegroundstateenergy. toastate“Z”(Fig.7c). Inthiscase,theenvironmentrequires Thislackofthermalizationatlowtemperaturesforsmallsys- amorecomplexconnectivitythanthesimpleone-dimensional temsissupportedbysimulationsinRef.[17]. oneinordertoobservethescalingas1/√D (Fig.7d).There- What do our results say about trying to prolong the time E fore,althoughwefindthatsomerandomnessintheinteraction todecoherenceinordertobuildpracticalquantumencryption strengthsin E or between S and E the dynamicsis very im- or quantum computational devices? The important thing is portanttodrivethewholesystemtowardthestate“Z”,asseen to ensure that the system is not driven toward the state “Z”, inFigs.3,5,7a,b,and9itisnotalwayssufficient. Moreover oratleastthatittakesa verylongtimetoapproachthestate itmaytakealongtimetoevolvetowardthestate“Z”ifthere “Z”. This can be achieved by changing the Hamiltonian of isonlyalittlerandomness(Fig.9)oriftheenvironmentE is the system, H =H +H +H , such that it has very small S E SE large(the N =34results of Fig. 3). The long time thatmay randomness particularly in the coupling between the system

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.