ebook img

Quantum Computing: A Gentle Introduction (Scientific and Engineering Computation) PDF

389 Pages·2011·2.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Computing: A Gentle Introduction (Scientific and Engineering Computation)

QUANTUM COMPUTING ScientificandEngineeringComputation WilliamGroppandEwingLusk,editors;JanuszKowalik,foundingeditor Acompletelistofthebooksinthisseriescanbefoundatthebackofthisbook. QUANTUM COMPUTING AGentleIntroduction EleanorRieffelandWolfgangPolak TheMITPress Cambridge,Massachusetts London,England ©2011MassachusettsInstituteofTechnology Allrightsreserved.Nopartofthisbookmaybereproducedinanyformbyanyelectronicormechanicalmeans(including photocopying,recording,orinformationstorageandretrieval)withoutpermissioninwritingfromthepublisher. Forinformationaboutspecialquantitydiscounts,[email protected] ThisbookwassetinSyntaxandTimesRomanbyWestchesterBookGroup.PrintedandboundintheUnitedStatesof America. LibraryofCongressCataloging-in-PublicationData Rieffel,Eleanor,1965– Quantumcomputing:agentleintroduction/EleanorRieffelandWolfgangPolak. p. cm.—(Scientificandengineeringcomputation) Includesbibliographicalreferencesandindex. ISBN978-0-262-01506-6(hardcover: alk. paper) 1. Quantumcomputers. 2. Quantumtheory. I.Polak, Wolfgang, 1950– II.Title. QA76.889.R54 2011 004.1—dc22 2010022682 10 9 8 7 6 5 4 3 2 1 Contents Preface xi 1 Introduction 1 I QUANTUMBUILDINGBLOCKS 7 2 Single-QubitQuantumSystems 9 2.1 TheQuantumMechanicsofPhotonPolarization 9 2.1.1 ASimpleExperiment 10 2.1.2 AQuantumExplanation 11 2.2 SingleQuantumBits 13 2.3 Single-QubitMeasurement 16 2.4 AQuantumKeyDistributionProtocol 18 2.5 TheStateSpaceofaSingle-QubitSystem 21 2.5.1 RelativePhasesversusGlobalPhases 21 2.5.2 GeometricViewsoftheStateSpaceofaSingleQubit 23 2.5.3 CommentsonGeneralQuantumStateSpaces 25 2.6 References 25 2.7 Exercises 26 3 Multiple-QubitSystems 31 3.1 QuantumStateSpaces 32 3.1.1 DirectSumsofVectorSpaces 32 3.1.2 TensorProductsofVectorSpaces 33 3.1.3 TheStateSpaceofann-QubitSystem 34 3.2 EntangledStates 38 3.3 BasicsofMulti-QubitMeasurement 41 3.4 QuantumKeyDistributionUsingEntangledStates 43 3.5 References 44 3.6 Exercises 44 4 MeasurementofMultiple-QubitStates 47 4.1 Dirac’sBra/KetNotationforLinearTransformations 47 4.2 ProjectionOperatorsforMeasurement 49 vi Contents 4.3 HermitianOperatorFormalismforMeasurement 53 4.3.1 TheMeasurementPostulate 55 4.4 EPRParadoxandBell’sTheorem 60 4.4.1 SetupforBell’sTheorem 62 4.4.2 WhatQuantumMechanicsPredicts 62 4.4.3 SpecialCaseofBell’sTheorem:WhatAnyLocalHiddenVariableTheoryPredicts 63 4.4.4 Bell’sInequality 64 4.5 References 65 4.6 Exercises 66 5 QuantumStateTransformations 71 5.1 UnitaryTransformations 72 5.1.1 ImpossibleTransformations:TheNo-CloningPrinciple 73 5.2 SomeSimpleQuantumGates 74 5.2.1 ThePauliTransformations 75 5.2.2 TheHadamardTransformation 76 5.2.3 Multiple-QubitTransformationsfromSingle-QubitTransformations 76 5.2.4 TheControlled-NOTandOtherSinglyControlledGates 77 5.3 ApplicationsofSimpleGates 80 5.3.1 DenseCoding 81 5.3.2 QuantumTeleportation 82 5.4 RealizingUnitaryTransformationsasQuantumCircuits 84 5.4.1 DecompositionofSingle-QubitTransformations 84 5.4.2 Singly-ControlledSingle-QubitTransformations 86 5.4.3 Multiply-ControlledSingle-QubitTransformations 87 5.4.4 GeneralUnitaryTransformations 89 5.5 AUniversallyApproximatingSetofGates 91 5.6 TheStandardCircuitModel 93 5.7 References 93 5.8 Exercises 94 6 QuantumVersionsofClassicalComputations 99 6.1 FromReversibleClassicalComputationstoQuantumComputations 99 6.1.1 ReversibleandQuantumVersionsofSimpleClassicalGates 101 6.2 ReversibleImplementationsofClassicalCircuits 103 6.2.1 ANaiveReversibleImplementation 103 6.2.2 AGeneralConstruction 106 6.3 ALanguageforQuantumImplementations 110 6.3.1 TheBasics 111 6.3.2 Functions 112 6.4 SomeExampleProgramsforArithmeticOperations 115 6.4.1 EfficientImplementationofAND 115 6.4.2 EfficientImplementationofMultiply-ControlledSingle-QubitTransformations 116 6.4.3 In-PlaceAddition 117 6.4.4 ModularAddition 117 6.4.5 ModularMultiplication 118 6.4.6 ModularExponentiation 119 Contents vii 6.5 References 120 6.6 Exercises 121 II QUANTUMALGORITHMS 123 7 IntroductiontoQuantumAlgorithms 125 7.1 ComputingwithSuperpositions 126 7.1.1 TheWalsh-HadamardTransformation 126 7.1.2 QuantumParallelism 128 7.2 NotionsofComplexity 130 7.2.1 QueryComplexity 131 7.2.2 CommunicationComplexity 132 7.3 ASimpleQuantumAlgorithm 132 7.3.1 Deutsch’sProblem 133 7.4 QuantumSubroutines 134 7.4.1 TheImportanceofUnentanglingTemporaryQubitsinQuantumSubroutines 134 7.4.2 PhaseChangeforaSubsetofBasisVectors 135 7.4.3 State-DependentPhaseShifts 138 7.4.4 State-DependentSingle-QubitAmplitudeShifts 139 7.5 AFewSimpleQuantumAlgorithms 140 7.5.1 Deutsch-JozsaProblem 140 7.5.2 Bernstein-VaziraniProblem 141 7.5.3 Simon’sProblem 144 7.5.4 DistributedComputation 145 7.6 CommentsonQuantumParallelism 146 7.7 MachineModelsandComplexityClasses 148 7.7.1 ComplexityClasses 149 7.7.2 Complexity:KnownResults 150 7.8 QuantumFourierTransformations 153 7.8.1 TheClassicalFourierTransform 153 7.8.2 TheQuantumFourierTransform 155 7.8.3 AQuantumCircuitforFastFourierTransform 156 7.9 References 158 7.10 Exercises 159 8 Shor’sAlgorithm 163 8.1 ClassicalReductiontoPeriod-Finding 164 8.2 Shor’sFactoringAlgorithm 164 8.2.1 TheQuantumCore 165 8.2.2 ClassicalExtractionofthePeriodfromtheMeasuredValue 166 8.3 ExampleIllustratingShor’sAlgorithm 167 8.4 TheEfficiencyofShor’sAlgorithm 169 8.5 OmittingtheInternalMeasurement 170 8.6 Generalizations 171 8.6.1 TheDiscreteLogarithmProblem 172 8.6.2 HiddenSubgroupProblems 172 viii Contents 8.7 References 175 8.8 Exercises 176 9 Grover’sAlgorithmandGeneralizations 177 9.1 Grover’sAlgorithm 178 9.1.1 Outline 178 9.1.2 Setup 178 9.1.3 TheIterationStep 180 9.1.4 HowManyIterations? 181 9.2 AmplitudeAmplification 183 9.2.1 TheGeometryofAmplitudeAmplification 185 9.3 OptimalityofGrover’sAlgorithm 188 9.3.1 ReductiontoThreeInequalities 189 9.3.2 ProofsoftheThreeInequalities 191 9.4 DerandomizationofGrover’sAlgorithmandAmplitudeAmplification 193 9.4.1 Approach1:ModifyingEachStep 194 9.4.2 Approach2:ModifyingOnlytheLastStep 194 9.5 UnknownNumberofSolutions 196 9.5.1 VaryingtheNumberofIterations 197 9.5.2 QuantumCounting 198 9.6 PracticalImplicationsofGrover’sAlgorithmandAmplitudeAmplification 199 9.7 References 200 9.8 Exercises 201 III ENTANGLEDSUBSYSTEMSANDROBUSTQUANTUMCOMPUTATION 203 10 QuantumSubsystemsandPropertiesofEntangledStates 205 10.1 QuantumSubsystemsandMixedStates 206 10.1.1 DensityOperators 207 10.1.2 PropertiesofDensityOperators 213 10.1.3 TheGeometryofSingle-QubitMixedStates 215 10.1.4 VonNeumannEntropy 216 10.2 ClassifyingEntangledStates 218 10.2.1 BipartiteQuantumSystems 218 10.2.2 ClassifyingBipartitePureStatesuptoLOCCEquivalence 222 10.2.3 QuantifyingEntanglementinBipartiteMixedStates 224 10.2.4 MultipartiteEntanglement 225 10.3 DensityOperatorFormalismforMeasurement 229 10.3.1 MeasurementofDensityOperators 230 10.4 TransformationsofQuantumSubsystemsandDecoherence 232 10.4.1 Superoperators 233 10.4.2 OperatorSumDecomposition 234 10.4.3 ARelationBetweenQuantumStateTransformationsandMeasurements 238 10.4.4 Decoherence 239 10.5 References 240 10.6 Exercises 240 Contents ix 11 QuantumErrorCorrection 245 11.1 ThreeSimpleExamplesofQuantumErrorCorrectingCodes 246 11.1.1 AQuantumCodeThatCorrectsSingleBit-FlipErrors 246 11.1.2 ACodeforSingle-QubitPhase-FlipErrors 251 11.1.3 ACodeforAllSingle-QubitErrors 252 11.2 FrameworkforQuantumErrorCorrectingCodes 253 11.2.1 ClassicalErrorCorrectingCodes 254 11.2.2 QuantumErrorCorrectingCodes 257 11.2.3 CorrectableSetsofErrorsforClassicalCodes 258 11.2.4 CorrectableSetsofErrorsforQuantumCodes 259 11.2.5 CorrectingErrorsUsingClassicalCodes 261 11.2.6 DiagnosingandCorrectingErrorsUsingQuantumCodes 264 11.2.7 QuantumErrorCorrectionacrossMultipleBlocks 268 11.2.8 ComputingonEncodedQuantumStates 268 11.2.9 SuperpositionsandMixturesofCorrectableErrorsAreCorrectable 269 11.2.10 TheClassicalIndependentErrorModel 270 11.2.11 QuantumIndependentErrorModels 271 11.3 CSSCodes 274 11.3.1 DualClassicalCodes 274 11.3.2 ConstructionofCSSCodesfromClassicalCodesSatisfyingaDualityCondition 275 11.3.3 TheSteaneCode 278 11.4 StabilizerCodes 280 11.4.1 BinaryObservablesforQuantumErrorCorrection 280 11.4.2 PauliObservablesforQuantumErrorCorrection 282 11.4.3 DiagnosingandCorrectingErrors 283 11.4.4 ComputingonEncodedStabilizerStates 285 11.5 CSSCodesasStabilizerCodes 289 11.6 References 290 11.7 Exercises 291 12 FaultToleranceandRobustQuantumComputing 293 12.1 SettingtheStageforRobustQuantumComputation 294 12.2 Fault-TolerantComputationUsingSteane’sCode 297 12.2.1 TheProblemwithSyndromeComputation 297 12.2.2 Fault-TolerantSyndromeExtractionandErrorCorrection 298 12.2.3 Fault-TolerantGatesforSteane’sCode 300 12.2.4 Fault-TolerantMeasurement 303 12.2.5 Fault-TolerantStatePreparationof|π(cid:2)/4(cid:2) 304 12.3 RobustQuantumComputation 305 12.3.1 ConcatenatedCoding 306 12.3.2 AThresholdTheorem 308 12.4 References 310 12.5 Exercises 310 13 FurtherTopicsinQuantumInformationProcessing 311 13.1 FurtherQuantumAlgorithms 311 13.2 LimitationsofQuantumComputing 313

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.