ebook img

Quantum Biological Information Theory PDF

278 Pages·2016·8.411 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Biological Information Theory

Ivan B. Djordjevic Quantum Biological Information Theory Quantum Biological Information Theory Ivan B. Djordjevic Quantum Biological Information Theory IvanB.Djordjevic DepartmentofElectricalandComputerEngineering UniversityofArizona Tucson,AZ,USA ISBN978-3-319-22815-0 ISBN978-3-319-22816-7 (eBook) DOI10.1007/978-3-319-22816-7 LibraryofCongressControlNumber:2015947789 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) to Milena Preface Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photorecep- tion,genetics,electrontransferinproteins,andevolution,tomentionafew.Ithas become evident that certain organisms can harness some of the quantum- mechanical features for a biological advantage over competitors. On the other hand, the standard DNA template-replication paradigm is not able to explain neitherthelong-termstorageofthegeneticinformationnortheevolutionofgenetic material through generations. Classical/quantum information theory provides the limits,knownaschannelcapacity,beyondbiologicalerrorsthatcannotbecorrected for. Any correction mechanism in communication systems has the limits on error correctioncapability.TheDNApolproofreadingandDNArepairmechanismsare weakerrorcorrectionconcepts,farawayfrombiologicalchannelcapacity,andas such are unable to explain the faithful preservation of the genetic information through the ages. The concepts from unequal error protection must be used to explainthefaithfulpreservationsofimportantgenesthroughgenerations.However, this genetic stability is not absolute, regardless ofgenetic error correctionmecha- nism.Ontheotherhand,theimperfectstabilityingeneticmaterialisalsorespon- sible for evolution. Without evolution, life will be in the same form as it initially appeared. There were also many attempts in an effort to explain the structure of geneticcodeandtransferofinformationfromDNAtoproteinbyusingtheconcepts ofclassicalinformationtheory.However,giventhatmanybiologicalprocessesin organismsarequantummechanicsdependent,classicalinformationtheoryisinsuf- ficient to provide proper answers to many open problems today. Moreover, given thatShannon(classical)entropyisjustthespecialcaseofvonNeumann(quantum) entropy,itappearsthatonlyquantuminformationtheoryeffortsarerelevant. Thekeyideainthisbookistodescribevariousbiologicalprocessesascommu- nication processes, be they of classical, quantum, or hybrid nature. By using this approach, we describe the information flow from DNA to protein as the quantum communicationchannelproblem.Inthismodel,DNAreplication,DNAtomRNA transcription, and mRNA to protein translations are considered as imperfect vii viii Preface processes subject to biological errors. We employ this model to describe both faithful preservation of genetic information and the evolution of genetic informa- tion from generation to generation. We then establish the connection between operator sum representation, used to model quantum biological channels, and quantum master equation (QME), widely used in quantum biology to describe various processes listed above, in particular photosynthesis, magnetoreception, and photoreception, and demonstrate that QME is just the Markovian approxima- tion of the operator sum representation. This indicates that the quantum channel model description given byoperatorsum representation andthe QME description are equivalent to each other (under the Markovian approximation) and can be interchangeably used to simplify the description of quantum biological process. The particularuse ofrepresentationis dictated bythe biological problem at hand. Therefore, our approach essentially integrates quantum information theory (QIT) and currently existing quantum biology (QB) approaches, and as such it can be calledthequantumbiologicalinformationtheory. ThebookQuantumBiological InformationTheoryis aself-contained,tutorial- basedintroductiontoquantuminformationtheoryandquantumbiology.Itservesas asingle-sourcereferencetothetopicforresearchersinbioengineering,communi- cations engineering, electrical engineering, applied mathematics, biology, com- puter science, and physics. The book provides all the essential principles of the quantumbiological informationtheoryrequiredtodescribethe quantum informa- tiontransferfromDNAtoproteins,thesourcesofgeneticnoiseandgeneticerrors, as well as their effects. For additional details on the book, an interested reader is referredtotheintroductionchapterandcontents. Theuniquefeaturesofthebookinclude: • Itintegratesquantuminformationandquantumbiologyconcepts. • Thebookdoesnotrequirethepriorknowledgeofquantummechanics. • The book does not require any prerequisite material except basic concepts of vectoralgebraatundergraduatelevel. • Thebookdoesnotrequirepriorknowledgeingeneticsorcellbiology. • Thisbookoffersin-depthdiscussionofthequantumbiologicalchannelmodel- ing,quantumbiologicalchannelcapacitycalculation,quantummodelsofaging, quantum models of evolution, quantum models on tumor and cancer develop- ment, quantum modeling of bird navigationcompass, quantum aspects ofpho- tosynthesis,andquantumbiologicalerrorcorrection. • Thesuccessfulreaderofthebookwillbewellpreparedforfurtherstudyinthis areaandwillbequalifiedtoperformindependentresearch. Finally,theauthorwouldliketothankCharlesGlaser,JeffreyTaub,andNicole LowaryofSpringerUSfortheirtremendouseffortinorganizingthelogisticsofthe book including editing and promotion, which is indispensible to make this book happen. Tucson,AZ IvanB.Djordjevic Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 QuantumBiologyPerspective. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 QuantumInformationTheoryandBiology. . . . . . . . . . . . . . . . . . 7 1.3 OrganizationoftheBook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4 ConcludingRemarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 QuantumInformationTheoryFundamentals. . . . . . . . . . . . . . . . . . 21 2.1 StateVectors,Operators,ProjectionOperators, andDensityOperators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.1 StateVectorsandOperators. . . . . . . . . . . . . . . . . . . . . . . 22 2.1.2 ProjectionOperators. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.3 Photon,Spin-½Systems,andHadamardGate. . . . . . . . . . 24 2.1.4 DensityOperators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2 Measurements,UncertaintyRelations,andDynamics ofaQuantumSystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.2 UncertaintyPrinciple. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.3 Time-EvolutionSchr€odingerEquation. . . . . . . . . . . . . . . 33 2.3 QuantumInformationProcessing(QIP)Fundamentals. . . . . . . . . 36 2.3.1 SuperpositionPrinciple,QuantumParallelism, QuantumGates,andQIPBasics. . . . . . . . . . . . . . . . . . . . 37 2.3.2 No-CloningTheoremandDistinguishing theQuantumStates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3.3 QuantumEntanglement. . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3.4 OperatorSumRepresentation. . . . . . . . . . . . . . . . . . . . . . 46 2.3.5 DecoherenceEffects,Depolarization, andAmplitudeDampingChannelModels. . . . . . . . . . . . . 48 2.4 Classical(Shannon)andQuantum (vonNeumann)Entropies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.