ebook img

Quantum Algorithms for Scientific Computing and Approximate Optimization PDF

264 Pages·2017·1.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Algorithms for Scientific Computing and Approximate Optimization

Quantum Algorithms for Scientific Computing and Approximate Optimization Stuart Andrew Hadfield Submittedinpartialfulfillmentofthe requirementsforthedegree ofDoctorofPhilosophy intheGraduateSchoolofArtsandSciences COLUMBIA UNIVERSITY 2018 (cid:13)c 2018 StuartAndrewHadfield AllRightsReserved ABSTRACT Quantum Algorithms for Scientific Computing and Approximate Optimization Stuart Andrew Hadfield Quantum computation appears to offer significant advantages over classical computation and this hasgeneratedatremendousinterestinthefield. Inthisthesiswestudytheapplicationofquantum computerstocomputationalproblemsinscienceandengineering,andtocombinatorialoptimization problems. Weoutlinetheresultsbelow. Algorithms for scientific computing require modules, i.e., building blocks, implementing ele- mentary numerical functions that have well-controlled numerical error, are uniformly scalable and reversible, andthatcanbeimplementedefficiently. Wederivequantumalgorithmsandcircuitsfor computingsquareroots,logarithms,andarbitraryfractionalpowers,andderiveworst-caseerrorand cost bounds. We describe a modular approach to quantum algorithm design as a first step towards numericalstandardsandmathematicallibrariesforquantumscientificcomputing. A fundamental but computationally hard problem in physics is to solve the time-independent Schro¨dinger equation. This is accomplished by computing the eigenvalues of the corresponding Hamiltonianoperator. Theeigenvaluesdescribethedifferentenergylevelsofasystem. Thecostof classical deterministic algorithms computing these eigenvalues grows exponentially with the num- ber of system degrees of freedom. The number of degrees of freedom is typically proportional to thenumberofparticlesinaphysicalsystem. Weshowanefficientquantumalgorithmforapproxi- matingaconstantnumberoflow-ordereigenvaluesofaHamiltonianusingaperturbationapproach. WeapplythisalgorithmtoaspecialcaseoftheSchro¨dingerequationandshowthatouralgorithm succeeds with high probability, and has cost that scales polynomially with the number of degrees offreedomandthereciprocalofthedesiredaccuracy. Thisimprovesandextendsearlierresultson quantumalgorithmsforestimatingthegroundstateenergy. Weconsiderthesimulationofquantummechanicalsystemsonaquantumcomputer. Weshow anoveldivideandconquerapproachforHamiltoniansimulation. UsingtheHamiltonianstructure, wecanobtainfastersimulationalgorithms. ConsideringasumofHamiltonianswesplittheminto groups, simulate each group separately, and combine the partial results. Simulation is customized totakeadvantageofthepropertiesofeachgroup,andhenceyieldrefinedboundstotheoverallsim- ulationcost. Weillustrateourresultsusingtheelectronicstructureproblemofquantumchemistry, whereweobtainsignificantlyimprovedcostestimatesundermildassumptions. Weturntocombinatorialoptimizationproblems. Animportantopenquestioniswhetherquan- tum computers provide advantages for the approximation of classically hard combinatorial prob- lems. A promising recently proposed approach of Farhi et al. is the Quantum Approximate Opti- mization Algorithm (QAOA). We study the application of QAOA to the Maximum Cut problem, and derive analytic performance bounds for the lowest circuit-depth realization, for both general and special classes of graphs. Along the way, we develop a general procedure for analyzing the performance of QAOA for other problems, and show an example demonstrating the difficulty of obtainingsimilarresultsforgreaterdepth. We show a generalization of QAOA and its application to wider classes of combinatorial opti- mization problems, in particular, problems with feasibility constraints. We introduce the Quantum AlternatingOperatorAnsatz,whichutilizesmoregeneralunitaryoperatorsthantheoriginalQAOA proposal. Our framework facilitates low-resource implementations for many applications which maybeparticularlysuitableforearlyquantumcomputers. Wespecifydesigncriteria, anddevelop asetofresultsandtoolsformappingdiverseproblemstoexplicitquantumcircuits. Wederivecon- structionsforseveralimportantprototypicalproblemsincludingMaximumIndependentSet,Graph Coloring,andtheTravelingSalesmanproblem,andshowappealingresourcecostestimatesfortheir implementations. Table of Contents ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 Introduction 1 1.1 QuantumAlgorithmsandCircuitsforScientificComputing . . . . . . . . . . . . . 2 1.2 ApproximatingGroundandExcitedStateEnergiesonaQuantumComputer . . . . 3 1.3 DivideandConquerHamiltonianSimulation . . . . . . . . . . . . . . . . . . . . 5 1.4 QuantumApproximateOptimization . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 QuantumAlgorithmsandCircuitsforScientificComputing 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Reciprocal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 SquareRoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 2k-Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.4 Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.5 FractionalPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 NumericalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 ApproximatingGroundandExcitedStateEnergiesonaQuantumComputer 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 ProblemDefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 i 3.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.1 PreliminaryAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4.2 AlgorithmDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5 Application: Time-IndependentSchro¨dingerEquation . . . . . . . . . . . . . . . . 49 3.5.1 SetofTrialEigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5.2 FiniteDifferenceDiscretization . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.3 AlgorithmforExcitedStateEnergies . . . . . . . . . . . . . . . . . . . . 54 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4 DivideandConquerApproachtoHamiltonianSimulation 64 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.1 ProblemDefinitionandBackground . . . . . . . . . . . . . . . . . . . . . 66 4.1.2 DivideandConquerSimulation . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.3 OverviewofMainResults . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2 PreliminaryAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.1 DiscardingSmallHamiltonians . . . . . . . . . . . . . . . . . . . . . . . 75 4.2.2 RecursiveLie-TrotterFormulas . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.3 CombiningDifferentSimulationMethods . . . . . . . . . . . . . . . . . . 77 4.3 DivideandConquerSplittingFormulas . . . . . . . . . . . . . . . . . . . . . . . 79 4.3.1 Algorithm1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3.2 Algorithm2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3.3 SelectingtheOrderoftheSplittingFormulas . . . . . . . . . . . . . . . . 85 4.3.4 Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.4 ApplicationtoQuantumChemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4.1 ElectronicHamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4.2 SimulationCost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5 QuantifyingthePerformanceofLow-DepthQAOA 99 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 ii 5.2.1 ApproximateOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.2.2 QuantumApproximateOptimizationAlgorithm(QAOA) . . . . . . . . . . 104 5.3 UnconstrainedOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.1 QuadraticUnconstrainedBinaryOptimization . . . . . . . . . . . . . . . 110 5.4 MaximumCut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4.2 PauliSolverAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.4.3 Triangle-FreeGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.4.4 GeneralGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.4.5 Depth-TwoQAOAfortheRingofDisagrees . . . . . . . . . . . . . . . . 122 5.4.6 WeightedMaximumCut . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.4.7 DirectedMaximumCut . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6 QuantumApproximateOptimizationwithHardandSoftConstraints 129 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.2 TheQuantumAlternatingOperatorAnsatz . . . . . . . . . . . . . . . . . . . . . . 132 6.2.1 DesignCriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.2.2 SimultaneousandSequentialMixers . . . . . . . . . . . . . . . . . . . . . 137 6.2.3 ConstraintSatisfactionviaCommutingOperators . . . . . . . . . . . . . . 139 6.3 ToolkitforQuantumOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.4 MappingsonBits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.4.1 MaxIndependentSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.5 Mappingsonk-Dits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.5.1 Maxk-Colorability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.5.2 Maxk-ColorableInducedSubgraph . . . . . . . . . . . . . . . . . . . . . 155 6.5.3 MinChromaticNumber . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.6 MappingsonPermutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.6.1 TravelingSalesmanProblem . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.6.2 SingleMachineScheduling . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.7 DiscussionandConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . 164 iii 7 ConclusionsandFutureWork 168 Bibliography 171 AppendixA ABriefOverviewofQuantumComputation 194 A.1 QuantumMechanicsofQuantumComputation . . . . . . . . . . . . . . . . . . . 195 A.2 QuantumComputationalModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 AppendixB ToolkitforQuantumOptimization 203 B.1 Representingn-bitFunctionsasDiagonalHamiltonians . . . . . . . . . . . . . . . 203 B.1.1 BooleanFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 B.1.2 Pseudo-BooleanFunctionsandConstraintSatisfactionProblems . . . . . . 209 B.2 ControlledHamiltonianEvolution . . . . . . . . . . . . . . . . . . . . . . . . . . 210 AppendixC QuantumAlgorithmsforScientificComputing 213 AppendixD DivideandConquerHamiltonianSimulation 227 D.1 ReviewofHigh-OrderSplittingFormulas . . . . . . . . . . . . . . . . . . . . . . 227 D.2 DivideandConquerHamiltonianSimulation . . . . . . . . . . . . . . . . . . . . 230 AppendixE QuantumApproximateOptimization 242 iv List of Figures 2.1 Ann-qubitfixed-precisionrepresentationofanumberw ≥ 0onaquantumregister. 13 2.2 Elementary module using fixed-precision arithmetic to implement exactly res ← xy+z forx,y,andz. Notethatregistersizes,ancillaregisters,andtheirvaluesare notindicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 √ 2.3 Block diagram of the overall circuit computing w. Two stages of Newton’s iter- ation using the functions g and g are applied s and s times respectively. The 1 2 1 2 first stage outputs xˆ ≈ 1, which is then used by the second stage to compute s1 w √ yˆ ≈ √1 ≈ w. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 s2 xˆs1 2.4 Aquantumcircuitcomputingtheinitialstate|xˆ (cid:105) = |2−p(cid:105),for|w(cid:105)givenbynbits 0 of which m are for its integer part, where p ∈ N and 2p > w ≥ 2p−1. Here we have taken b ≥ n−m. This circuit is used in step 4 of Algorithm 1 SQRT. Each horizontal line (“wire”) represents a qubit. This circuit consists of controlled-not (CNOT)andcontrolled-controlled-not(Toffoli)gates. Eachcrossedcircleindicates atargetqubit,controlledbythequbit(s)indicatedbyblackdots. Whitedotsindicate invertedcontrol. SeeAppendixAforareviewofsomeimportantquantumgates. . 20 (cid:12) (cid:69) 2.5 A quantum circuit computing the state |yˆ0(cid:105) = (cid:12)(cid:12)2(cid:98)q−21(cid:99) , for 0 < xˆs < 1 given by b bits, where q ∈ N and 21−q > xˆ ≥ 2−q. This circuit is used in step 10 of s Algorithm1SQRT.Itisforthecaseofevenb;asimilarcircuitfollowsforoddb. . 21 2.6 Overall circuit schematic for approximating lnw. The gate f(tˆ ) outputs yˆ = p p (tˆ −1)− 1(tˆ −1)2. Oncez isobtainedtheapproximationoflnw iscomputed p 2 p p bytheexpressionz +(p−1)r,whererapproximatesln2withhighaccuracyand p p−1isobtainedfromaquantumcircuitastheoneshowninFig.2.8. . . . . . . . 24 v 2.7 For w ≥ 1 this quantum circuit computes |x(cid:105) where x is an m bit number x ∈ [21−m,1]. Forw ≥ 2wesetx = 21−p,wherep−1 = (cid:98)log w(cid:99) ≥ 1. For1 ≤ w < 2 2 we set x = 1. Thus m bits are needed for the representation of x, with the first bit x(0)denotingitsintegerpartandalltheremainingbitsx(−1),...,x−(m−1)denoting its fractional part. This circuit is used in steps 6 – 10 of Algorithm 3 LN to derive x = 21−p soonecanimplementtheshiftofwintermsofmultiplicationbetweenw andx,i.e.,w = wx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 p 2.8 Example of a quantum circuit computing p − 1 ≥ 0 required in the last step of Algorithm3LN.Theinputtothiscircuitisthestate|x(cid:105)computedinFig.2.7where x = 2−(p−1). Recallthatmbitsareusedtostorex,andclearly(cid:100)log m(cid:101)bitssuffice 2 to store p−1 exactly. In this example, m = 9. It is straightforward to generalize thiscircuittoanarbitrarynumberm. . . . . . . . . . . . . . . . . . . . . . . . . 27 2.9 Example of a quantum circuit computing the positive integer k such that 2kw ≥ 1 > 2k−1w,for0 < w < 1withn−mbitsafterthedecimalpoint. Inthisexample, n−m = 8. It is straightforward to generalize this circuit to arbitrary numbers of bits. ThiscircuitisusedinAlgorithm5FractionalPower2. . . . . . . . . . . . . . 31 2.10 Semilog plot showing the error of Algorithm 1 SQRT versus the number of preci- sion bits b. The solid blue line is a plot of the worst-case error of Theorem 1, for n = 2m = 64. The three data sets represent the absolute value of the difference √ between Matlab’s floating point calculation of w and our algorithm’s result for threedifferentvaluesofw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.11 Semilog plot showing the error of Algorithm 3 LN versus the parameter (cid:96) which controls the accuracy of the result. The solid blue line shows the worst-case error of Theorem 3, for n = 2m = 64, b = max{5(cid:96),25}. The three data sets represent the absolute value of the difference between Matlab’s floating point calculation of ln(w)andouralgorithm’sresultforthreedifferentvaluesofw. . . . . . . . . . . . 34 vi

Description:
cost bounds. We describe a modular approach to quantum algorithm design as a first step towards numerical standards and mathematical libraries for quantum scientific computing. A fundamental but computationally hard problem in physics is to solve the time-independent. Schrödinger equation. This is
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.