Quantum Algorithms for Scientific Computing and Approximate Optimization Stuart Andrew Hadfield Submittedinpartialfulfillmentofthe requirementsforthedegree ofDoctorofPhilosophy intheGraduateSchoolofArtsandSciences COLUMBIA UNIVERSITY 2018 (cid:13)c 2018 StuartAndrewHadfield AllRightsReserved ABSTRACT Quantum Algorithms for Scientific Computing and Approximate Optimization Stuart Andrew Hadfield Quantum computation appears to offer significant advantages over classical computation and this hasgeneratedatremendousinterestinthefield. Inthisthesiswestudytheapplicationofquantum computerstocomputationalproblemsinscienceandengineering,andtocombinatorialoptimization problems. Weoutlinetheresultsbelow. Algorithms for scientific computing require modules, i.e., building blocks, implementing ele- mentary numerical functions that have well-controlled numerical error, are uniformly scalable and reversible, andthatcanbeimplementedefficiently. Wederivequantumalgorithmsandcircuitsfor computingsquareroots,logarithms,andarbitraryfractionalpowers,andderiveworst-caseerrorand cost bounds. We describe a modular approach to quantum algorithm design as a first step towards numericalstandardsandmathematicallibrariesforquantumscientificcomputing. A fundamental but computationally hard problem in physics is to solve the time-independent Schro¨dinger equation. This is accomplished by computing the eigenvalues of the corresponding Hamiltonianoperator. Theeigenvaluesdescribethedifferentenergylevelsofasystem. Thecostof classical deterministic algorithms computing these eigenvalues grows exponentially with the num- ber of system degrees of freedom. The number of degrees of freedom is typically proportional to thenumberofparticlesinaphysicalsystem. Weshowanefficientquantumalgorithmforapproxi- matingaconstantnumberoflow-ordereigenvaluesofaHamiltonianusingaperturbationapproach. WeapplythisalgorithmtoaspecialcaseoftheSchro¨dingerequationandshowthatouralgorithm succeeds with high probability, and has cost that scales polynomially with the number of degrees offreedomandthereciprocalofthedesiredaccuracy. Thisimprovesandextendsearlierresultson quantumalgorithmsforestimatingthegroundstateenergy. Weconsiderthesimulationofquantummechanicalsystemsonaquantumcomputer. Weshow anoveldivideandconquerapproachforHamiltoniansimulation. UsingtheHamiltonianstructure, wecanobtainfastersimulationalgorithms. ConsideringasumofHamiltonianswesplittheminto groups, simulate each group separately, and combine the partial results. Simulation is customized totakeadvantageofthepropertiesofeachgroup,andhenceyieldrefinedboundstotheoverallsim- ulationcost. Weillustrateourresultsusingtheelectronicstructureproblemofquantumchemistry, whereweobtainsignificantlyimprovedcostestimatesundermildassumptions. Weturntocombinatorialoptimizationproblems. Animportantopenquestioniswhetherquan- tum computers provide advantages for the approximation of classically hard combinatorial prob- lems. A promising recently proposed approach of Farhi et al. is the Quantum Approximate Opti- mization Algorithm (QAOA). We study the application of QAOA to the Maximum Cut problem, and derive analytic performance bounds for the lowest circuit-depth realization, for both general and special classes of graphs. Along the way, we develop a general procedure for analyzing the performance of QAOA for other problems, and show an example demonstrating the difficulty of obtainingsimilarresultsforgreaterdepth. We show a generalization of QAOA and its application to wider classes of combinatorial opti- mization problems, in particular, problems with feasibility constraints. We introduce the Quantum AlternatingOperatorAnsatz,whichutilizesmoregeneralunitaryoperatorsthantheoriginalQAOA proposal. Our framework facilitates low-resource implementations for many applications which maybeparticularlysuitableforearlyquantumcomputers. Wespecifydesigncriteria, anddevelop asetofresultsandtoolsformappingdiverseproblemstoexplicitquantumcircuits. Wederivecon- structionsforseveralimportantprototypicalproblemsincludingMaximumIndependentSet,Graph Coloring,andtheTravelingSalesmanproblem,andshowappealingresourcecostestimatesfortheir implementations. Table of Contents ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 Introduction 1 1.1 QuantumAlgorithmsandCircuitsforScientificComputing . . . . . . . . . . . . . 2 1.2 ApproximatingGroundandExcitedStateEnergiesonaQuantumComputer . . . . 3 1.3 DivideandConquerHamiltonianSimulation . . . . . . . . . . . . . . . . . . . . 5 1.4 QuantumApproximateOptimization . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 QuantumAlgorithmsandCircuitsforScientificComputing 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Reciprocal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 SquareRoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 2k-Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.4 Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.5 FractionalPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 NumericalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 ApproximatingGroundandExcitedStateEnergiesonaQuantumComputer 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 ProblemDefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 i 3.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.1 PreliminaryAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4.2 AlgorithmDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5 Application: Time-IndependentSchro¨dingerEquation . . . . . . . . . . . . . . . . 49 3.5.1 SetofTrialEigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5.2 FiniteDifferenceDiscretization . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.3 AlgorithmforExcitedStateEnergies . . . . . . . . . . . . . . . . . . . . 54 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4 DivideandConquerApproachtoHamiltonianSimulation 64 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.1 ProblemDefinitionandBackground . . . . . . . . . . . . . . . . . . . . . 66 4.1.2 DivideandConquerSimulation . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.3 OverviewofMainResults . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2 PreliminaryAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.1 DiscardingSmallHamiltonians . . . . . . . . . . . . . . . . . . . . . . . 75 4.2.2 RecursiveLie-TrotterFormulas . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.3 CombiningDifferentSimulationMethods . . . . . . . . . . . . . . . . . . 77 4.3 DivideandConquerSplittingFormulas . . . . . . . . . . . . . . . . . . . . . . . 79 4.3.1 Algorithm1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3.2 Algorithm2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3.3 SelectingtheOrderoftheSplittingFormulas . . . . . . . . . . . . . . . . 85 4.3.4 Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.4 ApplicationtoQuantumChemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4.1 ElectronicHamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4.2 SimulationCost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5 QuantifyingthePerformanceofLow-DepthQAOA 99 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 ii 5.2.1 ApproximateOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.2.2 QuantumApproximateOptimizationAlgorithm(QAOA) . . . . . . . . . . 104 5.3 UnconstrainedOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.1 QuadraticUnconstrainedBinaryOptimization . . . . . . . . . . . . . . . 110 5.4 MaximumCut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4.2 PauliSolverAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.4.3 Triangle-FreeGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.4.4 GeneralGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.4.5 Depth-TwoQAOAfortheRingofDisagrees . . . . . . . . . . . . . . . . 122 5.4.6 WeightedMaximumCut . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.4.7 DirectedMaximumCut . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6 QuantumApproximateOptimizationwithHardandSoftConstraints 129 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.2 TheQuantumAlternatingOperatorAnsatz . . . . . . . . . . . . . . . . . . . . . . 132 6.2.1 DesignCriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.2.2 SimultaneousandSequentialMixers . . . . . . . . . . . . . . . . . . . . . 137 6.2.3 ConstraintSatisfactionviaCommutingOperators . . . . . . . . . . . . . . 139 6.3 ToolkitforQuantumOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.4 MappingsonBits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.4.1 MaxIndependentSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.5 Mappingsonk-Dits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.5.1 Maxk-Colorability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.5.2 Maxk-ColorableInducedSubgraph . . . . . . . . . . . . . . . . . . . . . 155 6.5.3 MinChromaticNumber . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.6 MappingsonPermutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.6.1 TravelingSalesmanProblem . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.6.2 SingleMachineScheduling . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.7 DiscussionandConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . 164 iii 7 ConclusionsandFutureWork 168 Bibliography 171 AppendixA ABriefOverviewofQuantumComputation 194 A.1 QuantumMechanicsofQuantumComputation . . . . . . . . . . . . . . . . . . . 195 A.2 QuantumComputationalModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 AppendixB ToolkitforQuantumOptimization 203 B.1 Representingn-bitFunctionsasDiagonalHamiltonians . . . . . . . . . . . . . . . 203 B.1.1 BooleanFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 B.1.2 Pseudo-BooleanFunctionsandConstraintSatisfactionProblems . . . . . . 209 B.2 ControlledHamiltonianEvolution . . . . . . . . . . . . . . . . . . . . . . . . . . 210 AppendixC QuantumAlgorithmsforScientificComputing 213 AppendixD DivideandConquerHamiltonianSimulation 227 D.1 ReviewofHigh-OrderSplittingFormulas . . . . . . . . . . . . . . . . . . . . . . 227 D.2 DivideandConquerHamiltonianSimulation . . . . . . . . . . . . . . . . . . . . 230 AppendixE QuantumApproximateOptimization 242 iv List of Figures 2.1 Ann-qubitfixed-precisionrepresentationofanumberw ≥ 0onaquantumregister. 13 2.2 Elementary module using fixed-precision arithmetic to implement exactly res ← xy+z forx,y,andz. Notethatregistersizes,ancillaregisters,andtheirvaluesare notindicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 √ 2.3 Block diagram of the overall circuit computing w. Two stages of Newton’s iter- ation using the functions g and g are applied s and s times respectively. The 1 2 1 2 first stage outputs xˆ ≈ 1, which is then used by the second stage to compute s1 w √ yˆ ≈ √1 ≈ w. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 s2 xˆs1 2.4 Aquantumcircuitcomputingtheinitialstate|xˆ (cid:105) = |2−p(cid:105),for|w(cid:105)givenbynbits 0 of which m are for its integer part, where p ∈ N and 2p > w ≥ 2p−1. Here we have taken b ≥ n−m. This circuit is used in step 4 of Algorithm 1 SQRT. Each horizontal line (“wire”) represents a qubit. This circuit consists of controlled-not (CNOT)andcontrolled-controlled-not(Toffoli)gates. Eachcrossedcircleindicates atargetqubit,controlledbythequbit(s)indicatedbyblackdots. Whitedotsindicate invertedcontrol. SeeAppendixAforareviewofsomeimportantquantumgates. . 20 (cid:12) (cid:69) 2.5 A quantum circuit computing the state |yˆ0(cid:105) = (cid:12)(cid:12)2(cid:98)q−21(cid:99) , for 0 < xˆs < 1 given by b bits, where q ∈ N and 21−q > xˆ ≥ 2−q. This circuit is used in step 10 of s Algorithm1SQRT.Itisforthecaseofevenb;asimilarcircuitfollowsforoddb. . 21 2.6 Overall circuit schematic for approximating lnw. The gate f(tˆ ) outputs yˆ = p p (tˆ −1)− 1(tˆ −1)2. Oncez isobtainedtheapproximationoflnw iscomputed p 2 p p bytheexpressionz +(p−1)r,whererapproximatesln2withhighaccuracyand p p−1isobtainedfromaquantumcircuitastheoneshowninFig.2.8. . . . . . . . 24 v 2.7 For w ≥ 1 this quantum circuit computes |x(cid:105) where x is an m bit number x ∈ [21−m,1]. Forw ≥ 2wesetx = 21−p,wherep−1 = (cid:98)log w(cid:99) ≥ 1. For1 ≤ w < 2 2 we set x = 1. Thus m bits are needed for the representation of x, with the first bit x(0)denotingitsintegerpartandalltheremainingbitsx(−1),...,x−(m−1)denoting its fractional part. This circuit is used in steps 6 – 10 of Algorithm 3 LN to derive x = 21−p soonecanimplementtheshiftofwintermsofmultiplicationbetweenw andx,i.e.,w = wx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 p 2.8 Example of a quantum circuit computing p − 1 ≥ 0 required in the last step of Algorithm3LN.Theinputtothiscircuitisthestate|x(cid:105)computedinFig.2.7where x = 2−(p−1). Recallthatmbitsareusedtostorex,andclearly(cid:100)log m(cid:101)bitssuffice 2 to store p−1 exactly. In this example, m = 9. It is straightforward to generalize thiscircuittoanarbitrarynumberm. . . . . . . . . . . . . . . . . . . . . . . . . 27 2.9 Example of a quantum circuit computing the positive integer k such that 2kw ≥ 1 > 2k−1w,for0 < w < 1withn−mbitsafterthedecimalpoint. Inthisexample, n−m = 8. It is straightforward to generalize this circuit to arbitrary numbers of bits. ThiscircuitisusedinAlgorithm5FractionalPower2. . . . . . . . . . . . . . 31 2.10 Semilog plot showing the error of Algorithm 1 SQRT versus the number of preci- sion bits b. The solid blue line is a plot of the worst-case error of Theorem 1, for n = 2m = 64. The three data sets represent the absolute value of the difference √ between Matlab’s floating point calculation of w and our algorithm’s result for threedifferentvaluesofw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.11 Semilog plot showing the error of Algorithm 3 LN versus the parameter (cid:96) which controls the accuracy of the result. The solid blue line shows the worst-case error of Theorem 3, for n = 2m = 64, b = max{5(cid:96),25}. The three data sets represent the absolute value of the difference between Matlab’s floating point calculation of ln(w)andouralgorithm’sresultforthreedifferentvaluesofw. . . . . . . . . . . . 34 vi
Description: