Table Of ContentQuantum Algorithms for Scientific Computing and
Approximate Optimization
Stuart Andrew Hadfield
Submittedinpartialfulfillmentofthe
requirementsforthedegree
ofDoctorofPhilosophy
intheGraduateSchoolofArtsandSciences
COLUMBIA UNIVERSITY
2018
(cid:13)c 2018
StuartAndrewHadfield
AllRightsReserved
ABSTRACT
Quantum Algorithms for Scientific Computing and
Approximate Optimization
Stuart Andrew Hadfield
Quantum computation appears to offer significant advantages over classical computation and this
hasgeneratedatremendousinterestinthefield. Inthisthesiswestudytheapplicationofquantum
computerstocomputationalproblemsinscienceandengineering,andtocombinatorialoptimization
problems. Weoutlinetheresultsbelow.
Algorithms for scientific computing require modules, i.e., building blocks, implementing ele-
mentary numerical functions that have well-controlled numerical error, are uniformly scalable and
reversible, andthatcanbeimplementedefficiently. Wederivequantumalgorithmsandcircuitsfor
computingsquareroots,logarithms,andarbitraryfractionalpowers,andderiveworst-caseerrorand
cost bounds. We describe a modular approach to quantum algorithm design as a first step towards
numericalstandardsandmathematicallibrariesforquantumscientificcomputing.
A fundamental but computationally hard problem in physics is to solve the time-independent
Schro¨dinger equation. This is accomplished by computing the eigenvalues of the corresponding
Hamiltonianoperator. Theeigenvaluesdescribethedifferentenergylevelsofasystem. Thecostof
classical deterministic algorithms computing these eigenvalues grows exponentially with the num-
ber of system degrees of freedom. The number of degrees of freedom is typically proportional to
thenumberofparticlesinaphysicalsystem. Weshowanefficientquantumalgorithmforapproxi-
matingaconstantnumberoflow-ordereigenvaluesofaHamiltonianusingaperturbationapproach.
WeapplythisalgorithmtoaspecialcaseoftheSchro¨dingerequationandshowthatouralgorithm
succeeds with high probability, and has cost that scales polynomially with the number of degrees
offreedomandthereciprocalofthedesiredaccuracy. Thisimprovesandextendsearlierresultson
quantumalgorithmsforestimatingthegroundstateenergy.
Weconsiderthesimulationofquantummechanicalsystemsonaquantumcomputer. Weshow
anoveldivideandconquerapproachforHamiltoniansimulation. UsingtheHamiltonianstructure,
wecanobtainfastersimulationalgorithms. ConsideringasumofHamiltonianswesplittheminto
groups, simulate each group separately, and combine the partial results. Simulation is customized
totakeadvantageofthepropertiesofeachgroup,andhenceyieldrefinedboundstotheoverallsim-
ulationcost. Weillustrateourresultsusingtheelectronicstructureproblemofquantumchemistry,
whereweobtainsignificantlyimprovedcostestimatesundermildassumptions.
Weturntocombinatorialoptimizationproblems. Animportantopenquestioniswhetherquan-
tum computers provide advantages for the approximation of classically hard combinatorial prob-
lems. A promising recently proposed approach of Farhi et al. is the Quantum Approximate Opti-
mization Algorithm (QAOA). We study the application of QAOA to the Maximum Cut problem,
and derive analytic performance bounds for the lowest circuit-depth realization, for both general
and special classes of graphs. Along the way, we develop a general procedure for analyzing the
performance of QAOA for other problems, and show an example demonstrating the difficulty of
obtainingsimilarresultsforgreaterdepth.
We show a generalization of QAOA and its application to wider classes of combinatorial opti-
mization problems, in particular, problems with feasibility constraints. We introduce the Quantum
AlternatingOperatorAnsatz,whichutilizesmoregeneralunitaryoperatorsthantheoriginalQAOA
proposal. Our framework facilitates low-resource implementations for many applications which
maybeparticularlysuitableforearlyquantumcomputers. Wespecifydesigncriteria, anddevelop
asetofresultsandtoolsformappingdiverseproblemstoexplicitquantumcircuits. Wederivecon-
structionsforseveralimportantprototypicalproblemsincludingMaximumIndependentSet,Graph
Coloring,andtheTravelingSalesmanproblem,andshowappealingresourcecostestimatesfortheir
implementations.
Table of Contents
ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 Introduction 1
1.1 QuantumAlgorithmsandCircuitsforScientificComputing . . . . . . . . . . . . . 2
1.2 ApproximatingGroundandExcitedStateEnergiesonaQuantumComputer . . . . 3
1.3 DivideandConquerHamiltonianSimulation . . . . . . . . . . . . . . . . . . . . 5
1.4 QuantumApproximateOptimization . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 QuantumAlgorithmsandCircuitsforScientificComputing 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Reciprocal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 SquareRoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 2k-Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.4 Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.5 FractionalPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 NumericalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3 ApproximatingGroundandExcitedStateEnergiesonaQuantumComputer 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 ProblemDefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
i
3.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 PreliminaryAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 AlgorithmDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Application: Time-IndependentSchro¨dingerEquation . . . . . . . . . . . . . . . . 49
3.5.1 SetofTrialEigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.2 FiniteDifferenceDiscretization . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.3 AlgorithmforExcitedStateEnergies . . . . . . . . . . . . . . . . . . . . 54
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4 DivideandConquerApproachtoHamiltonianSimulation 64
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.1 ProblemDefinitionandBackground . . . . . . . . . . . . . . . . . . . . . 66
4.1.2 DivideandConquerSimulation . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.3 OverviewofMainResults . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 PreliminaryAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.1 DiscardingSmallHamiltonians . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2 RecursiveLie-TrotterFormulas . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.3 CombiningDifferentSimulationMethods . . . . . . . . . . . . . . . . . . 77
4.3 DivideandConquerSplittingFormulas . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.1 Algorithm1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.2 Algorithm2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.3 SelectingtheOrderoftheSplittingFormulas . . . . . . . . . . . . . . . . 85
4.3.4 Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4 ApplicationtoQuantumChemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.1 ElectronicHamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.2 SimulationCost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5 QuantifyingthePerformanceofLow-DepthQAOA 99
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
ii
5.2.1 ApproximateOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.2 QuantumApproximateOptimizationAlgorithm(QAOA) . . . . . . . . . . 104
5.3 UnconstrainedOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.1 QuadraticUnconstrainedBinaryOptimization . . . . . . . . . . . . . . . 110
5.4 MaximumCut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.2 PauliSolverAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.3 Triangle-FreeGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4.4 GeneralGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4.5 Depth-TwoQAOAfortheRingofDisagrees . . . . . . . . . . . . . . . . 122
5.4.6 WeightedMaximumCut . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.4.7 DirectedMaximumCut . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6 QuantumApproximateOptimizationwithHardandSoftConstraints 129
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 TheQuantumAlternatingOperatorAnsatz . . . . . . . . . . . . . . . . . . . . . . 132
6.2.1 DesignCriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2.2 SimultaneousandSequentialMixers . . . . . . . . . . . . . . . . . . . . . 137
6.2.3 ConstraintSatisfactionviaCommutingOperators . . . . . . . . . . . . . . 139
6.3 ToolkitforQuantumOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.4 MappingsonBits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.4.1 MaxIndependentSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.5 Mappingsonk-Dits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.5.1 Maxk-Colorability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.5.2 Maxk-ColorableInducedSubgraph . . . . . . . . . . . . . . . . . . . . . 155
6.5.3 MinChromaticNumber . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.6 MappingsonPermutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.6.1 TravelingSalesmanProblem . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.6.2 SingleMachineScheduling . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.7 DiscussionandConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . 164
iii
7 ConclusionsandFutureWork 168
Bibliography 171
AppendixA ABriefOverviewofQuantumComputation 194
A.1 QuantumMechanicsofQuantumComputation . . . . . . . . . . . . . . . . . . . 195
A.2 QuantumComputationalModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
AppendixB ToolkitforQuantumOptimization 203
B.1 Representingn-bitFunctionsasDiagonalHamiltonians . . . . . . . . . . . . . . . 203
B.1.1 BooleanFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
B.1.2 Pseudo-BooleanFunctionsandConstraintSatisfactionProblems . . . . . . 209
B.2 ControlledHamiltonianEvolution . . . . . . . . . . . . . . . . . . . . . . . . . . 210
AppendixC QuantumAlgorithmsforScientificComputing 213
AppendixD DivideandConquerHamiltonianSimulation 227
D.1 ReviewofHigh-OrderSplittingFormulas . . . . . . . . . . . . . . . . . . . . . . 227
D.2 DivideandConquerHamiltonianSimulation . . . . . . . . . . . . . . . . . . . . 230
AppendixE QuantumApproximateOptimization 242
iv
List of Figures
2.1 Ann-qubitfixed-precisionrepresentationofanumberw ≥ 0onaquantumregister. 13
2.2 Elementary module using fixed-precision arithmetic to implement exactly res ←
xy+z forx,y,andz. Notethatregistersizes,ancillaregisters,andtheirvaluesare
notindicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
√
2.3 Block diagram of the overall circuit computing w. Two stages of Newton’s iter-
ation using the functions g and g are applied s and s times respectively. The
1 2 1 2
first stage outputs xˆ ≈ 1, which is then used by the second stage to compute
s1 w
√
yˆ ≈ √1 ≈ w. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
s2 xˆs1
2.4 Aquantumcircuitcomputingtheinitialstate|xˆ (cid:105) = |2−p(cid:105),for|w(cid:105)givenbynbits
0
of which m are for its integer part, where p ∈ N and 2p > w ≥ 2p−1. Here we
have taken b ≥ n−m. This circuit is used in step 4 of Algorithm 1 SQRT. Each
horizontal line (“wire”) represents a qubit. This circuit consists of controlled-not
(CNOT)andcontrolled-controlled-not(Toffoli)gates. Eachcrossedcircleindicates
atargetqubit,controlledbythequbit(s)indicatedbyblackdots. Whitedotsindicate
invertedcontrol. SeeAppendixAforareviewofsomeimportantquantumgates. . 20
(cid:12) (cid:69)
2.5 A quantum circuit computing the state |yˆ0(cid:105) = (cid:12)(cid:12)2(cid:98)q−21(cid:99) , for 0 < xˆs < 1 given
by b bits, where q ∈ N and 21−q > xˆ ≥ 2−q. This circuit is used in step 10 of
s
Algorithm1SQRT.Itisforthecaseofevenb;asimilarcircuitfollowsforoddb. . 21
2.6 Overall circuit schematic for approximating lnw. The gate f(tˆ ) outputs yˆ =
p p
(tˆ −1)− 1(tˆ −1)2. Oncez isobtainedtheapproximationoflnw iscomputed
p 2 p p
bytheexpressionz +(p−1)r,whererapproximatesln2withhighaccuracyand
p
p−1isobtainedfromaquantumcircuitastheoneshowninFig.2.8. . . . . . . . 24
v
2.7 For w ≥ 1 this quantum circuit computes |x(cid:105) where x is an m bit number x ∈
[21−m,1]. Forw ≥ 2wesetx = 21−p,wherep−1 = (cid:98)log w(cid:99) ≥ 1. For1 ≤ w < 2
2
we set x = 1. Thus m bits are needed for the representation of x, with the first bit
x(0)denotingitsintegerpartandalltheremainingbitsx(−1),...,x−(m−1)denoting
its fractional part. This circuit is used in steps 6 – 10 of Algorithm 3 LN to derive
x = 21−p soonecanimplementtheshiftofwintermsofmultiplicationbetweenw
andx,i.e.,w = wx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
p
2.8 Example of a quantum circuit computing p − 1 ≥ 0 required in the last step of
Algorithm3LN.Theinputtothiscircuitisthestate|x(cid:105)computedinFig.2.7where
x = 2−(p−1). Recallthatmbitsareusedtostorex,andclearly(cid:100)log m(cid:101)bitssuffice
2
to store p−1 exactly. In this example, m = 9. It is straightforward to generalize
thiscircuittoanarbitrarynumberm. . . . . . . . . . . . . . . . . . . . . . . . . 27
2.9 Example of a quantum circuit computing the positive integer k such that 2kw ≥
1 > 2k−1w,for0 < w < 1withn−mbitsafterthedecimalpoint. Inthisexample,
n−m = 8. It is straightforward to generalize this circuit to arbitrary numbers of
bits. ThiscircuitisusedinAlgorithm5FractionalPower2. . . . . . . . . . . . . . 31
2.10 Semilog plot showing the error of Algorithm 1 SQRT versus the number of preci-
sion bits b. The solid blue line is a plot of the worst-case error of Theorem 1, for
n = 2m = 64. The three data sets represent the absolute value of the difference
√
between Matlab’s floating point calculation of w and our algorithm’s result for
threedifferentvaluesofw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.11 Semilog plot showing the error of Algorithm 3 LN versus the parameter (cid:96) which
controls the accuracy of the result. The solid blue line shows the worst-case error
of Theorem 3, for n = 2m = 64, b = max{5(cid:96),25}. The three data sets represent
the absolute value of the difference between Matlab’s floating point calculation of
ln(w)andouralgorithm’sresultforthreedifferentvaluesofw. . . . . . . . . . . . 34
vi
Description:cost bounds. We describe a modular approach to quantum algorithm design as a first step towards numerical standards and mathematical libraries for quantum scientific computing. A fundamental but computationally hard problem in physics is to solve the time-independent. Schrödinger equation. This is