ebook img

Quantization of $r-Z$-quasi-Poisson manifolds and related modified classical dynamical $r$-matrices PDF

0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantization of $r-Z$-quasi-Poisson manifolds and related modified classical dynamical $r$-matrices

Quantization of r−Z-quasi-Poisson manifolds and related 8 0 modified classical dynamical r-matrices 0 2 n GillesHalbout a J 7 InstitutdeMathe´matiquesetdeMode´lisationdeMontpellier 1 UMR5149del’Universite´MontpellierIIetduCNRS ] CC5149,PlaceEuge`neBataillon A F-34095MontpellierCEDEX5 Q e-mail:[email protected] . h t February 2,2008 a m [ Abstract 1 v ¥ LeX beaC -manifoldandgbea finitedimensionalLiealgebraactingfreelyonX. 9 Let r∈L 2(g) be such thatZ =[r,r]∈L 3(g)g. In this paper we provethat everyquasi- 8 7 Poisson (g,Z)-manifold can be quantized. This is a generalizationof the existence of a 2 twistquantizationofcoboundaryLiebialgebras([EH])inthecaseX =G(whereGisthe 1. simplyconnectedLiegroupcorrespondingtog).Wededuceourresultfromageneralized 0 formalitytheorem.InthecaseZ=0,wegetanewproofoftheexistenceof(equivariant) 8 formality theoremand so (equivariant)quantizationof Poisson manifold(cf. [Ko, Do]). 0 As a consequenceof ourresults, we get quantizationof modifiedclassical dynamicalr- : v matricesoverabelianbasesinthereductivecase. i X r 0. Introduction a Throughoutthis paper, the groundfield will be R. Letg be a finite dimensionalLie algebra with a fixed element r ∈L 3(g) such that [r,r]=Z ∈L 3(g)g. In [AK, AKM], quasi-PoissonmanifoldswereintroducedasageneralizationofPoissong-manifoldswith PoissonbracketsatisfyingtheJacobiidentityuptoaninvarianttrivectorcorrespondingto Z. Moreprecisely: Definition0.1. Aquasi-Poisson(g,Z)-manifoldisag-manifoldXwithaninvariantbivec- torp suchthattheSchoutenbracket[p ,p ] equalsg ⊗3(Z),whereg : g→Vect(X)isthe S actionhomomorphism. TheSchoutenbracketwillbedescibedlater. ThusthePoissonbracket{−,−}associated top satisfies {{f,g},h}+{{g,h},f}+{{h,f},g}=m (g ⊗3(Z)(f⊗g⊗h)), 0 1 wherem istheusualmultiplication. Intheframeworkofdeformationquantization(see 0 [BFFLS1,BFFLS2]),EnriquezandEtingofdefinedthequantizationofquasi-Poissonma- nifoldsin[EE1]: leth¯ beaformalparameterandF =1+h¯2Z+O(h¯3)∈(U(g)⊗3)g[[h¯]] 6 beanassociatorforg(Drinfeldprovedin[Dr], Proposition3.10,thatsuchanassociator alwaysexists). Definition0.2. AquantizationofX associatedtoF isaninvariantstar-product⋆onX,i.e. ¥ aninvariantbidifferentialoperatoronC (X), whichsatisfies f ⋆g= fg+O(h¯)andthe equation f⋆g−g⋆f =h¯{f,g}+O(h¯2), andisassociativeinthetensorcategoryof(U(g)[[h¯]],F )-modules. Thismeans, m (m ⊗1)=m (1⊗m )g ⊗3(F ), ⋆ ⋆ ⋆ ⋆ onC¥ (X)⊗3,wherem (f⊗g)= f⋆g. ⋆ They also conjectured that such quantizations always exist when the action of g on the quasi-Poisson manifold X is free. Note that when the action is not free, Fronsdal([Fr]) gavein 1978a counter-examplewheresuchquantizationis impossibleeveninthe sym- plectic case. From now on, we will suppose that the manifold X is a G-bundle over a manifoldM, whereGisthesimplyconnectedLiegroupcorrespondingtog. Inthecase G={e},theconjectureisequivalenttotheexistenceofstar-productsandwasprovedby Kontsevich([Ko]).InthecaseZ=0,theconjecturefollowsfromtheequivariantformality theoremofDolgushev([Do]). Inthegeneralcase,g ⊗3(Z)commuteswithalltheleftinvariantpolyvectorfieldsinthe followingsense: [g ⊗3(Z),X] =0, forallinvariantpolyvectorfieldsX. (0.1) S Moreover,forF anassociator,g ⊗3(F )commuteswithalltheinvariantdifferentialopera- torsinthefollowingsense: [g ⊗3(F ),C] =0, forallinvariantdifferentialoperatorC (0.2) G (theGerstenhaberbracket[−,−] willbedescribedlaterinthispaper). Fromnowon,if G s∈L k(g),wewilldenotesinsteadofg ⊗k(s)whennoconfusionispossible. Inthispaper,weprovethatthereexists(aleast)oneassociatorforgsuchthatEnriquez- Etingof’sconjectureistrue: Theorem 0.3. Let r∈L 3(g) such that [r,r]=Z ∈L 3(g)g. There exists F =1+h¯2Z+ 6 O(h¯3)∈(U(g)⊗3)g[[h¯]] and a deformation g of the Lie algebra g such that for every h¯ invariantbivectorp satisfying[p ,p ] =g ⊗3(Z),thequasi-Poissonmanifold(X,p )admits S aquantizationassociatedto(F ,g )i.e.amultiplicationassociativeinthetensorcategory h¯ of(U(g )[[h¯]],F )-modules. h¯ Toprovethistheorem,wewillconstructaformalitybetweeninvariantpolyvectorand polydifferentialoperatorasstated in Theorem7.3. We first provea localversionof this theorem in the case X =Rn×g. Using Fedosov’s resolutions we will be able to get a global version. We then get the wanted invariant star-product on the manifold X and classificationofsuchdeformations.Wewillthendiscusstherelationwithquantizationof modifiedclassicaldynamicalr-matrices. 2 Remark0.4. Asaparticularcase,ourresultsgiveanewproofofKontsevich(andDolgu- shevforequivariant)formalitytheorem.OnecanseethisapproachasrelatedtoMerkulov’s work(see[Me])forquantizationofLiebialgebras.Inourworktheuseofagradedversion of Etingof-Kazhdantheoremwas acrucialstep to gofromquantizationof Liebialgebra toquantizationofPoissonmanifolds. Thepaperisorganizedasfollows: -InSection1,werecalldefinitionsofL¥ -structuresandformalitymorphisms. - In Section2, we givea gragedversionof quantizationof Lie bialgebras: in particular, wegetdifferentialgradedEtingof-Kazhdanquantization/dequantizationfunctors. - In Sections 3 and 4, we construct two useful functors between Lie and Gerstenhaber algebras“uptohomotopy”andprovetheexistenceoftworesolutionsforthosealgebras. -InSection5, weprovetheexistenceofL¥ -morphismsbetweenDG Liebialgebrasand theGerstenhaberalgebraoftheirEtingof-Kazhdanquantization - In Section 6, we transpose the algebra structures into the category of (U(g)[[h¯]],F )- modules. We define the graded Lie bialgebra g˜ =R⊕V[1]⊕V∗⊕g, the direct sum of theEisenbergLiealgebraE=R⊕V[1]⊕V∗andtheLiebialgebra(g,[r,−])whichcorre- spondslocallytothealgebraofinvariantpoly-vectors.Weprovetheexistenceofthelocal wantedL¥ -morphism. - In Section 7, we show that this L¥ -morphism can be globalized and prove our main theorem. -InSection8,wediscussrelationbetweenourquantizationandquantizationofmodified classicaldynamicalr-matrices. Notations Weusethestandardnotationforthecoproduct-insertionmaps:wesaythatanorderedset is a pair of a finite set S and a bijection {1,...,|S|}→S. For I ,...,I disjoint ordered 1 m subsetsof{1,...,n},(U,D )aHopfalgebraanda∈U⊗m,wedefine aI1,...,Im =s I1,...,Im◦(D (|I1|)⊗···⊗D (|Im|))(a), withD (1)=id,D (2)=D ,D (n+1)=(id⊗n−1⊗D )◦D (n),ands I1,...,Im :U⊗(cid:229) i|Ii|→U⊗nisthe morphismcorrespondingtothemap{1,...,(cid:229) |I|}→{1,...,n}taking(1,...,|I |)toI , i i 1 1 (|I |+1,...,|I |+|I |)toI ,etc. WhenU iscocommutative,thisdefinitiondependsonly 1 1 2 2 onthesetsunderlyingI ,...,I . 1 m Untiltheendofthispaper,althoughwewilloftenomittomentionit,wewillalways dealwithgradedstructures. Acknowledgements I would like to thank D. Calaque and B. Enriquez for discussions. Part of this work was done during the program “Poisson Sigma Models, Lie Algebroids, Deformations, andHigherAnalogues”attheErwinSchro¨dingerInternationalInstituteforMathematical Physics. 3 1 L¥ -structures 1.1 Definitions LetusrecalldefinitionsofL¥ -algebrasandL¥ -morphisms.LetAbeagradedvectorspace. WedenoteT A=T (A[−1])thefreetensoralgebra(withoutunit)ofAwhich,equipped + + with the coshuffle coproduct, is a bialgebra. We also denoteC(A)=S(A[−1]) the free gradedcommutativealgebrageneratedbyA[−1],seenasaquotientofT A. Thecoshuffle + coproductisstillwelldefinedonC(A)whichbecomesacofreecocommutativecoalgebra onA[−1]. WealsodenoteL A=S(A[1]),theanalogousgradedcommutativealgebragen- eratedbyA[1](inparticular,forA ,A ∈A,A L A standsforthecorrespondingquotient 1 2 1 2 ofA [1]⊗A [1]inL A). We willusethenotationsTnA,L nAandCn(A)fortheelements 1 2 + ofdegreen. Definition 1.1. A vector space A is endowedwith a L¥ -algebra(Lie algebra“up to ho- motopy”)structureif there aredegreeonelinearmapsd1,...,1: L kA→A[1]such thatthe associatedcoderivations(extendedwithrespecttothecofreecocommutativestructureon L A)d:L A→L A,satisfyd◦d=0wheredisthecoderivation d=d1+d1,1+···+d1,...,1+···. In particular,a differentialLie algebra(A,b,[−,−])is a L¥ -algebrawith structuremaps d1 =b[1], d1,1=[−,−][1]andd1,...,1: L kA→A[1]are0fork≥3. Onecannowdefine thegeneralizationofLiealgebramorphisms: Definition1.2. AL¥ -morphismbetweentwoL¥ -algebras(A1,d1=d11+···)and(A2,d2= d1+···)isamorphismofcodifferentialcofreecoalgebras,ofdegree0, 2 j : (L A ,d )→(L A ,d ). 1 1 2 2 Inparticularj ◦d =d ◦j . Asj isamorphismofcofreecocommutativecoalgebras,j 1 2 isdeterminedbyitsimageonthecogenerators,i.e.,byitscomponents: j 1,...,1:L kA → 1 A [1]. 2 Let E be a graded vector space. Let us denote cT(E) the cofree tensor coalgebra of E with coproductD ′. Equipped with the shuffle product• (defined on the cogenera- torscT(E)⊗cT(E)→E aspr⊗e +e ⊗pr, wherepr: cT(E)→E isthe projectionand e is the counit), it is a bialgebra. Let cT (E) be the augmentation ideal. We denote + cT(E)=cT (E)/(cT (E)•cT (E))thequotientbytheshuffles. Ithasagradedcofree + + + Liecoalgebrastructure(withcoproductd =D ′−D ′op). ThenS(cT(E)[1])hasastructure ofcofreecoGerstenhaberalgebra(i.e. equippedwithcofreecoLieandcofreecocommu- tativecoproductssatisfyingcompatibilitycondition). WeusethenotationcTn(E)forthe elementsofdegreen. Remark1.3. OnecouldalsodefineG¥ -structures.MostoftheL¥ -morphismconstructed in this paper are also G¥ -morphismsbetween correspondingG¥ -structures. Definitions andextensionstoG¥ -structurescanbefoundin[Ha]. 4 2 Etingof-Kazhdan functors 2.1 QUEand QFSHalgebras We recall some facts from [Dr] (proofs and definitions can be found in [Gav]). Let us denote by QUE the category of quantized universal enveloping (QUE) algebras and by QFSH the categoryof quantizedformalseries Hopf(QFSH) algebras. Let us recallthe definitionofFSHandQFSHalgebras: Definition2.1. AFSHalgebraisaHopfalgebraofpowerseriesisomorphicasanalgebra toK[[{u|i∈J}]](forsomesetJ). i There is an equivalence of categories between the category of FSH algebra and the categoryofLiecoalgebra(LCalgebra),sendingO toh=O /O 2 whereO isthe h h+ h+ h+ maximalidealofO . h Definition2.2. AQFSHalgebraisaHopfalgebraH,whichisatopologicallyfreeK[[h¯]]- module,suchthatH :=H/h¯H isisomorphictoaFSHalgebra 0 LetusgiveanexampleofaFSHalgebra,veryimportantinthispaper:letV beavector space andcTV (definedin the previoussection) thecofreecoalgebra,equippedwith the shuffleproduct. LetusnowcompletecTV. ThealgebracTV isagradedalgebrawithV beingthesetofelementsofdegree1. LetusdenoteMcTV thesetofelementsofdegree ≥1. Finally,wedenotecTV thecommutativecofreebialgebra,McTV-adiccompletionof cTV. c Proposition2.3. [Ha]cTV is the FSHalgebraOcTV associatedwith the Lie coalgebra cTV =cT V/(cT V)2,whichisthecofreeLiecoalgebraoverV. + + c WehavecovariantfunctorsQUE→QFSH,U 7→U′ andQFSH→QUE,O 7→O∨. Thesefunctorsarealsoinversetoeachother. U′ isasubalgebraofU definedasfollows: foranyorderedsubset S ={i ,...,i }⊆ 1 k {1,...,n} with i1<···<ik, definethemorphism jS :U⊗k−→U⊗n by jS (a1⊗···⊗ ak):=b1⊗···⊗bn with bi:=1 if i∈/S and bim :=am for 1≤m≤k; thenset D S := jS ◦D (k), D 0/ :=D (0),and d S := (cid:229) (−1)n−|S ′|D S ′ , d 0/ :=e . S ′⊂S Weshallalsousethenotation d (n):=d , d (0):=d ,andtheusefulformula {1,2,...,n} 0/ d (n)=(id −e )⊗n◦D (n). U Finally,wedefine U′:= a∈U d (n)(a)∈hnU⊗n (⊆U) (cid:8) (cid:12) (cid:9) andendowitwiththeinducedtopolog(cid:12)y. Ontheotherway,O∨istheh¯-adiccompletionof(cid:229) h¯−kMk⊂O[1/h¯](hereM ⊂O k≥0 isthemaximalideal). 5 2.2 The functor DQ In[GH],ageneralizationofEtingof-Kazhdantheorem([EK])wasprovedinanappendix byEnriquezandEtingof: Theorem2.4. Wehaveanequivalenceofcategories DQF : DGQUE→DGLBAh from the category of differential graded quantized universal enveloping super-algebras to that of differential graded Lie super-bialgebras such that if U ∈ Ob(DGQUE) and a =DQ(U), then U/hU =U(a/ha), where U is the universal algebra functor, taking adifferentialgradedLiesuper-algebratoadifferentialgradedsuper-Hopfalgebra. HereF isaDrinfeldassociator. WewilluseanyofthesefunctorsanddenoteitDQ. 3 Two functors 3.1 Functor L-G Let(h,d ,d)beadifferentialLiebialgebra. LetC(h)=S(h[−1])bethefreegradedcom- mutative algebra generated by h. Recall from the previous subsection thatC(h) is also a cofree coalgebra and that coderivationsC(h)→C(h) are defined by their images in h. Thus, oneeasily checksthatthe coderivation[−,−]: C(h)→C(h) extendingtheLie bracket(withdegreeshiftedby one)definesa Lie (evenGerstenhaber)algebrastructure onC(h). Moreover, one can extend maps d: h→h and d : h→S2(h[−1]) on the free commutative algebraC(h) so that (C(h),[−,−],∧,d+d ) is a differential Gerstenhaber algebra. The differential d is actually the Chevalley Eilenberg differential: the space C(h)=S∗(h[−1])isisomorphictothestandardcomplex(L ∗(h))[−∗]andd issimplythe differentialgivenbytheunderlyingLiecoalgebrastructureofh. Proposition3.1. [Ha] AnyDGLA morphism f :h →h canbeextendedinto aDGLA 1 2 (andevendifferentialgradedGerstenhaber)morphismC(f):C(h )→C(h )offreecom- 1 2 mutative algebras. This definesan exactfunctorL-G from differentialLie bialgebrasto differentialGerstenhaberalgebraswhichsendshtoC(h). Quasi-isomorphisms(h ,d )→ 1 1 (h ,d )induceaquasi-isomorphisms(C(h ),d ,d )→(C(h ),d ,d ). 2 2 1 1 1 2 2 2 3.2 Functor L-G¥ ConsidernowthecategoryCFDLBofdifferentialLiebialgebraswhicharecofreeasaLie coalgebra. In other words we are interested in cofree Lie coalgebra cT(E) on a graded vector space E together with a differential ℓ and a cobracket L on cT(E) that makes it a differential Lie bialgebra. As cT(E) is cofree, the differentialis uniquely determined byitsrestrictionto cogeneratorslp: cTp(E)→E. Similarly,theLie bracketisuniquely determinedbymapsLp1,p2: cTp1(E)L cTp2(E)→E. Proposition3.2. [Ha]RestrictionmapcTp(E)→E definesanexactfunctorL-G¥ from CFDLBtothecategoryofG¥ (andsoLie)-algebras. Until the end of the paper, we will use the notationsTE for T(E[−1]) and cTE for T(E[1]). 6 4 Two resolutions 4.1 bialgebra structure oncTT U + Here,wewilldefineabialgebrastructureoncTT U.Onecanconstructabialgebrastruc- + tureonthespaceofHochschildcochainsofanalgebrausingthebraceoperations. Inour case,wewillfirstlygeneralizethedefinitionofbraceoperationsforageneralHopfalge- bra. Moreprecisely,let(H,D ,×)beaHopfalgebra(inourcaseH willbetheEtingof- h¯ KazhdanquantizationU (a)oftheLiebialgebraa). We willdefineabracestructureon h¯ thecofreetensorcoalgebracTT H ofthefreetensoralgebraT(H[−1])withoutunit. To + distinguish the two tensor products, we denote ⊗ the tensor producton T H and ⊠ the + tensorproductoncTT H. + Definition4.1. We define braceoperationsoncTT H by extendingthe followingmaps + givenonthecogeneratorsofthecofreecoalgebracTT H: + 1. B0=0, 2. B1=bcH (thecoHochschildcoboundaryonT+H), 3. B2 : a ⊠b 7→a ⊗b , 4. Bn=0forn>2, 5. B0,1=B1,0=id, 6. B0,n=Bn,0=0forn≥1, 7. B1,n :(a ,b ⊠···⊠b )7→ 1 n (cid:229) (−1)ea 1,...,i1+1···i1+k1,...,im+1···im+km,...,n× 0≤i1,...,im+km≤n il+kl≤il+1 1⊗i1⊗b ⊗1⊗i2−(i1+k1)⊗b ⊗···⊗b ⊗1⊗n−(im+km), 1 2 n wherek =|b |,n=|a |+(cid:229) k −mande =(cid:229) (k −1)i , s s s s s s s 8. Bk,l =0fork>1. Operations(2),(3)and(4)defineadifferentialdand(5),(6),(7)and(8)defineaproduct ⋆deformingtheshuffleproduct. Notethat,whenH=U(a),theenvelopingalgebraofaLiealgebraa,T(H[−1])canbe seenasthespaceofinvariantpolydifferentialoperatorsovertheLiegroupcorresponding toaandinthatcase,ourdefinitioncoincideswithusualbracesoperations. Wehave: Theorem4.2. [Ha]ThebraceoperationsofDefinition4.1defineadifferentialbialgebra structure on the cofree tensor coalgebra cTT+H, with product ⋆ extending (cid:229) Bp1,p2 and differentialdextending(cid:229) Bp. Let us now complete cTT H as in section 2 with V =T H. We get a commuta- + + tive cofree bialgebra cTT+H, the McTT+H-adic completion of cTT+H (where McTT+H is the maximal ideal of cTT H). Let us consider the free K[[n ]]-module cTT H[[n ]]. c + + One can now replace the operationsBp,q of Definition 4.1 with K[[n ]]-linear operations c n p+q−1Bp,q. Those operations are well defined on the completion cTT H[[n ]] as this + spaceiscompleteforthegradinginducedbythedegreeincTT H=cTV plustheh¯-adic + c 7 valuation and because the operationswe just defined are homogeneousfor this grading. Thuswegetamorphismofdifferentialbialgebra In : (cTT+H,⋆,D ,d)→(cTT+H[[n ]][n −1],⋆n ,D n ,dn ) x7→n −|x|x, (4.3) where |x| is the degree in cT. The morphism In extends to In : (cTT+H[[n ]],⋆,D ,d)→ (cTT+H[[n ]][n −1],⋆n ,D n ,dn )whichrestrictsto In′ : (⊕n ncTnT+H[[n ]],⋆,D ,d)→(cTT+H[[n ]][n −1],⋆n ,D n ,dn ) (4.4) Wehave: b c Proposition4.3. [Ha]Thealgebra(cTT+H[[n ]],⋆n ,D n ,dn )isaQFSHA.Theunderlying differentialLiebialgebrastructureoncTT H isgivenbytheGerstenhaberbracket + c [a ,b ] =B1,1(a ,b )−(−1)(|a |−1)(|b |−1)B1,1(b ,a ) G andcoHochschilddifferential bcH(a )=[1⊗1,a ]G, fora ,b ∈TH andthennaturallyextendedoncTT H usingthecofreeLiecobracket. + Remark4.4. LetnowHbetheQUEalgebraU=U (a).WehaveprovedthatT U canbe h¯ + equippedwithaG¥ -structure.SincethecofreeLiecoalgebrasarerigid,thedifferentialLie bialgebracorrespondingto cTT U[[n ]]throughEtingof-Kazhdandequantizationfunctor + DQisisomorphictocTT U[[n ]]asaK[[n ]]-Liecoalgebra,andisthereforefree. + c 4.2 Abialgebra quasi-isomorphismj : U →(cTT U)∨ alg + c Wehave: Proposition4.5. LetU beaQUEalgebra.Onecandefineabialgebraquasi-isomorphism f : U →cTT U from the bialgebra (U,D ,×) to the bialgebra (cTT U,D ,⋆) whose alg + h¯ + structurewasdescribedintheprevioussection. c LetU′⊂U (seesection2). Proposition4.6. [Ha]Wehaveabialgebraquasi-isomorphismj :(U′,×)→(cTT U,⋆ ) alg + h¯ ofQFSHalgebra,where(cTT+U,⋆h¯)is(cTT+U[[n ]],⋆n )/(n =h¯)(cTT+U[[n ]]iscthefree K[[h¯]]-moduledefinedintheprevioussection:wedtheoperationsBp,qinton p+q−1Bp,q). c c c Finally,applyingtoj thederivedDrinfeldfunctor(−)∨,wegetabialgebraquasi- alg isomorphismj :U →(cTT U)∨. alg + c 8 4.3 ALie bialgebra quasi-isomorphismj : cTA→cTC(cTA) Lie LetA be a vectorspace. SupposenowthatthecofreeLie coalgebracTA hasa structure (cTA,d ,[−,−],d)ofa differentialLie bialgebra. Using thefunctorL-G (see section3), onegetsadifferentialGerstenhaberalgebra(C(cTA),[−,−],∧,d+d ).Onecanextendthe structure maps on the cofree Lie coalgebracTC(cTA) and one gets a differentialcofree Liebialgebra(cTC(cTA),d ′,[−,−],d+d +∧)(wewillsetd1=d+d andd2=∧). Proposition4.7. [Ha]Letj bethecompositionmapj =cTi◦d¯ ofamap Lie Lie d¯ :cTA →cT(cTA), x 7→x+(cid:229) d¯ (x), k≥2 k whered¯ isbuiltusingiteratesofd ,withcTi:cT(cTA)→cTC(cTA)whichiscT ofthein- k clusioni:cTA[−1]→C(cTA).Thenj isadifferentialLiebialgebraquasi-isomorphism Lie j : cTA→cTC(cTA). Lie 5 L¥ -morphism for Lie bialgebras 5.1 ALie bialgebra quasi-isomorphismj ′ : a→cTT U Lie + Let(a,d )beagradedLiebialgebra. Wewrited =h¯d +h¯2d +···. Let(U (a),D )be h¯ h¯ 1 2 h¯ h¯ the Etingof-Kazhdancanonicalquantization of (a,d ). We denoteU =U (a) for short. h¯ h¯ Insection4, we provedtheexistenceofa bialgebrastructureoncTT U andabialgebra + quasi-isomorphism j : U →(cTT U)∨. Thanks to Etingof-Kazhdan dequantization alg + functor(see section2), andthe factthat(cTT U)∨ is aQUE algebraquantizingcTT U + + (seesection4),wegetaLiebialgebraquasi-isomorphismj ′ : a→cTT U. Lie + 5.2 Inversionofformalitymorphisms LetusrecallTheorem4.4ofKontsevich([Ko]): Theorem5.1. Letg1andg2betwoL¥ -algebrasandF beaL¥ -morphismfromg1tog2. AssumethatF isaquasi-isomorphism. ThenthereexistsanL¥ -morphismfromg2 tog1 inducingtheinverseisomorphismbetweenassociatedcohomologyofcomplexes. Remark5.2. WeknowtheexistenceofasimilarG¥ -versionofthistheorem. Thisresult wouldimplytheexistenceofcorrespondingG¥ -morphisms. 5.3 L¥ -morphism forLie bialgebras Let us summarize functorsand quasi-isomorphismsconstructedin the previoussections inthefollowingdiagram: 9 cTC(cTT U) C(cTT U)[1] = C(cTT U)[1] cTT U (cTT U)∨ + + + + + j L-G¥ j j L-G j ′ DQ cj ↑ Lie −→ ↑ G¥ ↑ Ger¥ ←− ↑ Lie ←− ↑ alg cTT U T U[1] C(a)[1] a U =U (a). + + h¯ Thus,thankstosection5.2,thecompositionj :C(a)→T U ofj withtheinverseof + Ger¥ j givesthewantedquasi-isomorphism. G¥ Theorem 5.3. [Ha] the map j C(a)→T+U is a L¥ -quasi-isomorphismthat maps v∈ C(a)toAlt(v)∈T Umodh¯. + 5.4 L¥ -morphism forX =Rn×g We will now consider X =Rn×g and r∈g∧g such that [r,r]=Z. So (g,[r,−]) is a Liebialgebra. LetussetV =R. FromnowonwewillconsiderthegradedLiebialgebra g˜=R⊕V[1]⊕V∗⊕g,thedirectsumoftheEisenbergLiealgebraE=R⊕V[1]⊕V∗and theLiebialgebra(g,[r,−]). Wewillnowdeduceourmainresultfrom: Proposition 5.4. There exists a L¥ -quasi-isomorphism j h¯ between (C(g˜),[−,−],[r,−]) and(T U˜,[−,−] ,[1⊗1,−] ). HereU˜ istheEtingof-Kazhdanquantizationofg˜ andso + h¯ h¯ U˜ =U(E)⊗U (g) whereU (g) is the Etingof-Kazhdan quantization of (g,[r,−]). The h¯ h¯ bracket[−,−] denotestheGerstenhaberbracketconstructedinSection4corresponding h¯ tothecoproductofU˜. 6 Deformed structures and local L¥ -morphism 6.1 Deformedstructures SupposewearegivenF ∈(U((g)⊗3)g[[h¯]]anassociator. Inparticular,g ⊗3(F )commutes withalltheinvariantdifferentialoperator.Wehaveinfact: [C,g ⊗3(F )] =0forallC∈U(g˜)[[h¯]]). G Fromnowon,wewillconsiderthetensorcategoryof(U(g)[[h¯]],F )-modules(inwhichwe wanttoconstructanassociativestar-product).Letusdefinethe“deformed”Gerstenhaber bracketastheBracketdefinedinSection4butinthenewtensorcategory.WegetanewLie algebrastructureonU(g˜)[[h¯]]givenbythebracket[−,−]F defined,forD,E ∈U(g˜)[[h¯]], by [D,E]F ={D|E}F −(−1)|E||D|{E|D}F , whereforD∈U(g˜)⊗d andE∈U(g˜)⊗e, {D|E}=(cid:229) (−1)(e−1)·iF˜D1,...,i,i+1···i+e,i+e+1,···Ei+1,...,i+e. i≥0 F˜ correspondstotheobviouschangeofparenthesisinthetensorcategoryof(U(g)[[h¯]],F )- modules.Forexample,ifAandBaretwo2-cochainsinU(g˜)[[h¯]],onehas {A,B}F =A12,3B1,2−F −1A1,23B2,3. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.