ebook img

Quantitative Techniques for Managerial Decisions PDF

666 Pages·2012·44.232 MB·Englsih
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantitative Techniques for Managerial Decisions

QUANTITATIVE TECHNIQUES FOR MANAGERIAL DECISIONS Second Edition R.B. KHANNA Professor Indian Institute for Planning and Management (IIPM) Jaipur New Delhi-110001 2012 QUANTITATIVE TECHNIQUES FOR MANAGERIAL DECISIONS, Second Edition R.B. Khanna © 2012 by PHI Learning Private Limited, New Delhi. All rights reserved. No part of this book may be reproduced in any form, by mimeograph or any other means, without permission in writing from the publisher. ISBN-978-81-203-4596-6 The export rights of this book are vested solely with the publisher. Third Printing (Second Edition) … … … June, 2012 Published by Asoke K. Ghosh, PHI Learning Private Limited, M-97, Connaught Circus, New Delhi-110001 and Printed by Mudrak, 30-A, Patparganj, Delhi-110091. For those who matter most to me Saroj, Shashi, Shweta, Dhiraj, Aparna and Roshni Preface………xi Preface to the First Edition………xiii 1. Decision Making—A Quantitative Approach………1–20 Learning Objectives………1 The Decision Dilemma………1 1.1 Introduction………2 1.2 Operations Research—The Quantitative Approach to Decision Making………4 1.3 Definitions of Operations Research………5 1.4 Characteristics of Operations Research………6 1.5 Models and Modelling in OR………7 1.6 OR Methodology………8 1.7 OR Techniques………14 1.8 Typical Applications of Operations Research………16 1.9 OR and Computers………17 1.10 Summary………17 Concept Quiz………17 Questions………20 SECTION A LINEAR PROGRAMMING 2. Linear Programming—Graphic Method………23–63 Learning Objectives………23 Crisis at Bhilpur………23 2.1 Introduction………24 2.2 Basic Requirements of a Linear Programming Problem………25 2.3 Graphical Solution to a Maximisation Problem………26 2.4 Summary of Graphical Maximisation Procedure………29 2.5 Technical Issues in Linear Programming………30 2.6 Minimisation Problem………32 2.7 Solution by Computer Package………34 2.8 Problem Formulation………36 2.9 Basic Assumptions of Linear Programming………51 2.10 Advantages and Limitations of Linear Programming………52 2.11 Summary………53 Concept Quiz………53 Questions 56 3. Linear Programming—Simplex Method………64–136 Learning Objectives………64 Manthan 64 3.1 Introduction………65 3.2 Setting up the Initial Solution ………66 3.3 Developing the Second Solution………69 3.4 Developing the Third Solution………73 3.5 Developing the Fourth Solution ………74 3.6 Summary of Steps in the Simplex Maximisation Procedure………76 3.7 Simplex Solution to a Minimisation Problem………76 3.8 Developing the Second Solution………79 3.9 Developing the Third Solution………80 3.10 Dual………82 3.11 Sensitivity Analysis………87 3.12 Solution by Computer Package………91 3.13 Technical Issues in the Simplex Method………95 3.14 Two Phase Method of Solving Problems Involving Artificial Variables………100 3.15 Solved Examples………102 3.16 Summary………121 Concept Quiz………122 Questions………124 SECTION B STOCHASTIC TECHNIQUES 4. Probability………139–171 Learning Objectives………139 Oil or Gas 139 4.1 Introduction………139 4.2 Basic Probability Concepts………140 4.3 Approaches to Probability………141 4.4 Addition Rules………143 4.5 Probabilities under Conditions of Statistical Independence………147 4.6 Probabilities under Conditions of Statistical Dependence………151 4.7 Revising Prior Estimates of Priorities: Baye’s Theorem………155 4.8 Solved Examples………157 4.9 Summary………164 Concept Quiz………165 Questions………168 5. Probability Distributions………172–197 Learning Objectives………172 Vahan Ancillaries………172 5.1 Introduction………173 5.2 Types of Probability Distributions………174 5.3 Random Variable………174 5.4 Expected Value of a Random Variable………174 5.5 Mean of a Distribution………176 5.6 Standard Deviation of a Distribution………176 5.7 Binomial Distribution………177 5.8 Poisson Distribution………178 5.9 Normal Distribution………179 5.10 Application Areas of Probability and Probability Distributions………186 5.11 Solved Examples………187 5.12 Summary………191 Concept Quiz………193 Questions………195 6. Decision Theory………198–241 Learning Objectives………198 On Oily Waters………198 6.1 Introduction ………199 6.2 Steps in Decision Making………201 6.3 Decision Making Environment………202 6.4 Decision Making under Uncertainty………202 6.5 Decision Making under Risk………205 6.6 Expected Value of Perfect Information (EVPI)………208 6.7 An Alternative Approach—Minimising Expected Losses………209 6.8 Marginal Analysis………210 6.9 Utility as a Decision Criterion………211 6.10 Decision Trees………214 6.11 Expected Value of Sample Information (EVSI)………217 6.12 Bayesian Revision of Probabilities………217 6.13 Solution by Computer Package………220 6.14 Solved Examples………223 6.15 Summary………230 Concept Quiz………232 Questions………234 7. Theory of Games………242–268 Learning Objectives………242 Blue Scooters Limited………242 7.1 Introduction………243 7.2 Assumptions, Definitions and Classification of Games ………243 7.3 Two-Person Zero Sum Games………244 7.4 Pure Strategies and Saddle Points………245 7.5 Mixed Strategies………246 7.6 Shortcut Method for Finding Optimum Mixed Strategies………248 7.7 Solution of Games by Dominance………249 7.8 Graphical Solution of Games………252 7.9 Solution by Linear Programming………257 7.10 Solved Examples………259 7.11 Solution by Computer Package………262 7.12 Summary………263 Concept Quiz………263 Questions………265 SECTION C MATHEMATICS FOR MANAGERS 8. Matrix Algebra………271–310 Learning Objectives………271 8.1 Introduction………271 8.2 Definitions………272 8.3 Operations on Matrices………273 8.4 Determinants………278 8.5 Inverse of a Matrix………281 8.6 Solution of a Set of n Simultaneous Linear Equations in n Variables………282 8.7 Applications………288 8.8 Solved Examples………293 8.9 Summary………303 Concept Quiz………304 Questions………306 9. Differential Calculus………311–333 Learning Objectives………311 9.1 Introduction………311 9.2 Functions and Limits………312 9.3 Concept of Slope and Rate of Change………313 9.4 Rules of Differentiation………314 9.5 Higher Order Derivatives………317 9.6 Applications………317 9.7 Solved Examples………321 9.8 Summary………328 Concept Quiz………329 Questions………331 10. Regression and Correlation………334–359 Learning Objectives………334 10.1 Introduction………334 10.2 Simple Linear Regression………335 10.3 Correlation………339 10.4 Karl Pearson’s Coefficient of Linear Correlation………341 10.5 Spearman’s Rank Correlation………343 10.6 Solved Examples………345 10.7 Summary………353 Concept Quiz………354 Questions………356 SECTION D EXTENSIONS OF LINEAR PROGRAMMING 11. Transportation Model………363–430 Learning Objectives………363 Ashiana………363 11.1 Introduction………364 11.2 Setting up the Transportation Tableau………364 11.3 Testing the Solution for Improvement………374 11.4 The Unbalanced Case (Demand and Supply are Unequal) ………384 11.5 Multiple Solutions………386 11.6 Degeneracy………387 11.7 Maximisation Problems………389 11.8 Least Time Transportation Model………391 11.9 Transhipment Model………394 11.10 Restrictions on Routes………395 11.11 Solution by Computer Package………395 11.12 Solved Examples………398 11.13 Summary ………414 Concept Quiz………414 Questions………417 12. Assignment Model………431–476 Learning Objectives………431 Mettalica Works Limited………431 12.1 Introduction………432 12.2 The Hungarian Method………433 12.3 Summary of the Assignment Method………437 12.4 Maximisation Case………437 12.5 Travelling Salesman Problem………440 12.6 Solution by Computer Package………443 12.7 Solved Examples………445 12.8 Summary………464 Concept Quiz………465 Questions………468 SECTION E PRECEDENCE MODELS 13. Network Models—CPM and PERT………479–541 Learning Objectives……… 479 Rasoi Appliances……… 479 13.1 Introduction……… 480 13.2 Critical Path Method (CPM)………481 13.3 Definitions………482 13.4 Rules and Conventions………482 13.5 Drawing a Network [Activity on Arrow (AOA)]………483 13.6 Calculating Earliest Start Time………485 13.7 Calculating Latest Finish Time (LFT)………486 13.8 Floats (Slacks), Critical Activities and Critical Path………487 13.9 Activity on Node (AON) Network………490 13.10 Crashing a Project………495 13.11 Resource Levelling………500 13.12 Control of Project Costs………502 13.13 Programme Evaluation and Review Technique (PERT)………504

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.