ebook img

Quantifying chaos: practical estimation of the correlation dimension PDF

268 Pages·1987·33.814 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantifying chaos: practical estimation of the correlation dimension

Quantifying Chaos: Practical Estimation of the Correlation Dimension Thesis by James Theiler In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1988 (Submitted 11 September 1987) - ii © 1988 James Theiler All Rights Reserved - iii and I have learned from experience with mathematics and love that neither is pure. iv ACKNOWLEDGEMENTS wish to acknowledge Professor Noel R. Corngold for his clear perspective, wise counsel, infinite patience, and uncountable criticisms (mostly constructive), as my thesis advisor. In the same breath, acknowledge Mark Muldoon for many fruitful discourses and digressions. Various conversations with Jim Havstad, Peter Grassberger, Henry Greenside, and J. Doyne Farmer have proved useful and interesting. I was first introduced to nonlinear differential equations by J. Patrick Miller. Finally, I would like to thank my parents, without whom dot dot dot, and all my family and friends and relatives, too numerous to mention, and too generous to forget. - v- Contents Copyright ....................................................................................................... ii Pretext . .. . . . . . . . . . . . . . .. . . . . .... . .. ... ... . . . . . .. .. . . . . .. .. . .. ... . . . . . . . .. . . .. . . . . . .... .. ... .. .. .. ... . .. . . . . .. ... iii Acknowledgements .......................................................................................... iv Contents ......................................................................................................... v Tables and Figures ......................................................................................... vi Outline ......................................................................................................... viii Abstract ....................................................................................................... xii CHAPTER ONE: Introduction ............................................ .............. 1 CHAPTER TWO: Overview of dimension algorithms ........................... 35 CHAPTER THREE: Geometrical properties of the correlation integral ... , 53 CHAPTER FOUR: Statistical analysis of chaotic motion ...................... 61 CHAPTER FIVE: Noise and discretization.......................................... 80 CHAPTER SIX: Edges, sharp edges and singularities ........................ 90 CHAPTER SEVEN: Lacunarity in fractal sets....................................... 106 CHAPTER EIGHT: Nonchaotic attractors: quasiperiodicity ................... 138 CHAPTER NINE: Autocorrelation ....................................................... 155 CHAPTER TEN: Statistical error ...................................................... 172 CHAPTER ELEVEN: Limitations on dimension imposed by finite N ............ 184 CHAPTER TWELVE: Computation ............................................................ 192 CHAPTER THIRTEEN: Linear analysis of time series .................................. 213 CHAPTER FOURTEEN: Analysis of physical data ........................................ 241 Bibliography ................................................................................................ 249 Postscript .. . . .... .. ... .... .. .. .. . . .. .. .. . .. .. ... ... .. .. .. .. ............. .... ... . . .. . . . . . .. . . .. ... .. .. .. .. . . . . 255 vi Tables and Figures Figure 1.1 Trajectory of the Lorenz equations ............................................ 32 Figure 1.2 Trajectory of the Henon map ..................................................... 32 Figure 1.3 Simple attractors ........................................................................ 33 Figure 1.4 Diverging trajectories, shrinking volume ..................................... 34 Figure 2.1 log n(t) versus log ~; the slope is the box-counting dimension ...... 51 Figure 2.2 Scaling of "mass" with radius for d - 0, 1, 2 ............................... 52 Figure 3.1 "Circles" in various Lp norms ..................................................... 60 Figure 5.1 The "fuzzy" line: m =2, d =1 ..................................................... 87 Figure 5.2 The correlation integral for noisy data ....................................... 88 Figure 5.3 The correlation integral for discretized data ............................... 89 Figure 6.1 The set S={Cxl'x )&[0,1]X[0,1] such that lx -x l<r} ................ 102 2 1 2 Figure 6.2 "Butterfly" density on interval [ -1,1] ...................................... 103 Figure 6.3 Correlation integral for the uniformly dense circle in L2 ........... 104 Figure 6.4 Convergence to correlation dimension v for singularity index a.. lOS Figure 7.1 Discrete self- similarity of a fractal: the Sierpinski gasket. ........ 130 Figure 7.2 The weighted Cantor measure ................................................... 131 Figure 7.3 The Devil's Staircase ............................................................... 132 Figure 7.4 Periodic undulations in the fraction F(r) ................................... 133 Figure 7.5 Self- similarity of Henon attractor at fixed point ....................... 134 Figure 7.6 log Cx ,y (r) versus log r for Henon attractor at fixed point. ... 135 0 0 Figure 7.7 Self-similarity of CXC on rotated axes ..................................... 136 Figure 7.8 Correlation integral for standard Cantor set. ............................. 137 Table 8.1 Rational approximations to the golden mean ............................... 144 Figure 8.1 Correlation integral C(N,r) for N equally spaced points .............. 150 Figure 8.2 C(N,r) for N randomly distributed points ................................... 151 vii Figure 8.3 C(N,r) for N quasiperiodically generated points .......................... 152 Figure 8.4 r m•n as a function of winding number 1/J ...................................... 153 Figure 8.5 C(N,r) for N =100 quasiperiodically generated points: various 1/J • 154 Figure 9.1 Standard C(N,r) for autocorrelated random data ......................... 167 Figure 9.2 Modified C(N,W,r) for autocorrelated random data, various W .... 168 Figure 9.3 Modified C(N,W=10,r) for autocorrelated random data ................ 169 Figure 9.4 Standard C(N,r) for Mackey-Glass dynamical data ...................... 170 Figure 9.5 Modified C(N,W =10,r) for Mackey-Glass dynamical data ............ 171 Figure 11.1 Finite N edge effect ................................................................. 191 Figure 12.1 Points of attractor are distributed into boxes of size r0 ••••••••••• 210 Figure 12.2 Correlation integral for the Henon attractor ........................... :. 211 Figure 12.3 Prism-assisted correlation . . .. . . .. . . . . . .. .. ... . .. .. . . ............ .. .. .. .. ..... .. . .. 212 Figure 13.1 Linear unpredictability of the Henon map.................................. 238 Figure 13.2 Measures of nonlinearity versus logistic parameter ~ ................ 239 Figure 13.3 Decorrelated time series: En+l verses En for Henon attractor ..... 240 Figure 14.1 Typical "shot" time series from Caltech tokamak ...................... 246 Figure 14.2 Correlation integral for Caltech tokamak data ........................... 247 Figure 14.3 Correlation integral for Texas tokamak (TEXT) data ................. 248 viii Outline I. INTRODUCTION AND OVERVIEW 1. Introduction 1.1 Chaos 1.1.1 Simple systems with complicated behavior 1.1.2 Sensitive dependence on initial conditions 1.2 Dynamical systems 1.2.1 Evolution operators 1.2.1.1 Ordinary differential equations 1.2.1.2 Maps 1.2.2 Trajectories through state space 1.2.3 Conservative and dissipative dynamical systems 1.3 Attractors 1.3.1 Simple attractors 1.3.2 Strange and chaotic attractors 1.3.3 Formal definition of an attractor 1.3.4 Natural invariant measure 1.4 Time series 1.4.1 Time delay coordinates 1.4.1.1 Optimal reconstruction of state space 1.4.2 Deterministic time series 1.4.3 Stochastic time series 1.5 Quantifying chaos: numerical diagnostics 1.5.1 Kolmogorov entropy and Lyapunov exponents 1.5.2 Dimension 1.5.2.1 Geometrical effects 1.5.2.2 Dynamical effects 1.5.2.3 Statistical effects 1.5.3 Application 1.6 Notes and References 2. Overview of dimension algorithms 2.1 Hausdorff dimension 2.2 Box-counting algorithm 2.3 Generalized dimensions 2.4 Pairwise distance algorithms 2.4.1 Pointwise dimension 2.4.2 Correia tion integral 2.4.2.1 Takens' maximum likelihood estimate 2.4.3 Nearest neighbors algorithm 2.4.4 Recurrence time algorithm 2.4.5 Periodic orbits algorithm 2.5 Notes and References ix II. CORRELATION DIMENSION A. Initial remarks 3. Geometrical Properties of the Correlation Integral 3.1 Correlation dimension is norm independent 3.2 Dimensions of direct products add 3.3 A geometric definition of the correlation integral 3.4 Notes and References 4. Statistical analysis of chaotic motion 4.1 Honest ensemble: E 0 4.2 Approximate ensembles: Ep E 2 4.3 Probability distribution 4.4 Distinguishing E and E 1 2 4.4.1 The "wraparound" metric 4.4.2 Ensemble E 1 4.4.2.1 E : Corre1ation integral 1 4.4.2.2 E : Shortest distance 1 4.4.3 Ensemble E 2 4.4.3.1 E : Correlation integral 2 4.4.3.2 E : Shortest distance 2 4.5 Notes and References B. Geometrical effects 5. Noise and discretization 5.1 Noise 5.2 Discretization 5.2.1 Lattice model 5.2.1.1 Loo norm 5.2.1.2 L norm 1 5.2.1.3 Implications for C(r) 5.3 Notes and References 6. Edges, sharp edges and singularities 6.1 Wraparound model 6.2 One-dimensional models 6.2.1 Uniform distribution 6.2.2 "Butterfly" distribution 6.2.3 Gaussian distribution 6.2.4 General one-dimensional distribution 6.3 A two-dimensional model 6.4 A higher dimensional model 6.5 Singularities 6.5.1 Logistic map 6.5.2 Power law singularities 6.6 Notes and References 7. Lacunarity in fractal sets 7.1 Cantor sets -X- 7 .1.1 Standard Cantor set 7.1.2 Weighted Cantor sets 7.2 Generating sample points 7.2.1 Iterated Function System (IFS) 7.2.2 Independent sample points 7.3 Pointwise dimension at the origin 7.3.1 The Fraction function 7.3.2 Standard Cantor set 7.3.3 Weighted Cantor set 7.3.4 Pointwise dimension at other points 7.3.5 Pointwise dimension on an attractor 7.4 The correlation integral 7 .4.1 Standard Cantor set 7.4.2 Weighted Cantor set 7.4:3 Strict and asymptotic self- similarity 7 .4.4 Correlation integral on an attractor 7.5 Conclusion 7.6 Notes and References C. Dynamical effects 8. Nonchaotic attractors: quasiperiodicity 8.1 Wraparound metric 8.2 Two control experiments 8.3 Twist map 8.3.1 Rational ¢ 8.3.2 Irrational ¢: the golden mean 8.3.3 Generic ¢ 8.4 Notes and References 9. Autocorrelation 9.1 The modified correlation algorithm 9.2 Au tocorrela ted stochastic data 9.2.1 Uncorrelated limit 9.2.2 Effect of autocorrelation 9.2.3 Recommendations for W 9.3 Numerical results 9.3.1 Stochastic data 9.3.2 Deterministic dynamical data 9.4 Conclusion 9.5 Notes and References D. Statistical effects 10. Statistical error 10.1 Least squares fit 10.2 Takens' maximum likelihood estimate 10.3 Average pointwise dimension 10.3.1 Nonuniformity 10.4 Notes and References

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.