ebook img

QTL analyses for tolerance to abiotic stresses in a common bean PDF

26 Pages·2017·4.45 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview QTL analyses for tolerance to abiotic stresses in a common bean

RESEARCHARTICLE QTL analyses for tolerance to abiotic stresses in a common bean (Phaseolus vulgaris L.) population LucyMilenaDiaz1,JaumerRicaurte1,EduardoTovar2,CesarCajiao1,HenryTera´n3, MiguelGrajales1,JosePolan´ıa1,IdupulapatiRao1¤b,StephenBeebe1,BodoRaatz1¤a* 1 BiotechnologyUnitandBeanProgram,InternationalCenterforTropicalAgriculture(CIAT),Cali,Valle, Colombia,2 InstitutodeInvestigacio´ndeRecursosBiolo´gicosAlexandervonHumboldt,Bogota´,Colombia, 3 DuPontPioneer,Salinas,PuertoRico,UnitedStatesofAmerica a1111111111 a1111111111 ¤a Currentaddress:CIAT-InternationalCenterforTropicalAgriculture,Cali,Colombia a1111111111 ¤b Currentaddress:PlantPolymerResearchUnit,NationalCenterforAgriculturalUtilizationResearch, a1111111111 AgriculturalResearchService,UnitedStatesDepartmentofAgriculture,Peoria,Illinois,UnitedStatesof a1111111111 America *[email protected] Abstract OPENACCESS Commonbeanproductivityisreducedbyseveralabioticstressfactorslikedroughtandlow Citation:DiazLM,RicaurteJ,TovarE,CajiaoC, Tera´nH,GrajalesM,etal.(2018)QTLanalysesfor soilfertility,leadingtoyieldlossesparticularlyinlowinputsmallholderfarmingsystemsin tolerancetoabioticstressesinacommonbean thetropics. (PhaseolusvulgarisL.)population.PLoSONE13 Tounderstandthegeneticsofstresstolerance,andtoimproveadaptationofcommon (8):e0202342.https://doi.org/10.1371/journal. beantoadverseenvironments,theBAT881xG21212populationof95recombinantinbred pone.0202342 lines(RILs)wasevaluatedunderdifferentabioticstressconditionsin15trialsacrossfour Editor:RobertoPapa,UniversitàPolitecnicadelle locationsinColombia,representingtwohigheraltitude(Darie´n,Popaya´n)andtwoloweralti- Marche,ITALY tude(Palmira,Quilichao)locations.Stressvsnon-stresstreatmentsshowedthatyields Received:December14,2017 werereducedindroughttrialsinPalmiraby13and31%,respectively,andobservedyield Accepted:August1,2018 reductionsinlowphosphorusstresswere39%inQuilichao,16%inPopaya´n,and71%in Published:August29,2018 Darie´n,respectively.Yieldcomponentsandbiomasstraitswerealsoreduced.Traitslinked Copyright:©2018Diazetal.Thisisanopen todrymatterredistributionfromstems,leavesandpodstoseed,suchaspodharvestindex accessarticledistributedunderthetermsofthe andtotalnon-structuralcarbohydrates,werefoundtobeimportantfactorscontributingto CreativeCommonsAttributionLicense,which yieldinallconditions.Incontrast,earlymaturitywascorrelatedwithimprovedyieldonlyin permitsunrestricteduse,distribution,and loweraltitudelocations,whereasinhigheraltitudesdelayedmaturitypromotedyield.Supe- reproductioninanymedium,providedtheoriginal authorandsourcearecredited. riorRILsthatcombinestresstoleranceandhighcross-locationproductivitywereidentified. Linesthatshowedgoodyieldunderstrongstressconditionsalsoperformedwellundernon- DataAvailabilityStatement:Allrawdatais availableondataverse,underthefollowinglink: stressconditions,indicatingthatbreeder’sselectioncanbeappliedforbothconditionsat https://dataverse.harvard.edu/dataset.xhtml? thesametime. persistentId=doi:10.7910/DVN/ODYAPF. Quantitativetraitloci(QTL)analysesrevealedastableyieldQTLonchromosomePv04, Funding:ThankstotheGenerationChallenge detectedindividuallyinalllocations,severalstresstreatmentsandinbestlinearunbiased Program(GCP,www.generationcp.org/).And predictions(BLUPs)acrossalltrials.Furthermore,twoQTLhotspotsformaturitytraitswere particularlyitscomponentTropicalLegumeI(TL-I) identifiedonPv01andPv08,whicharethemoststableQTL.TheconstitutiveyieldQTL project(fundedbytheBill&MelindaGates Foundation,OPPGD1392)continuedbytheTL3 couldserveasagoodcandidateformarkerdevelopmentandcouldbeusedinmarkerassis- project(http://tropicallegumes.icrisat.org/, tedselection. OPP1114827).Theauthorsalsoacknowledgethe PLOSONE|https://doi.org/10.1371/journal.pone.0202342 August29,2018 1/26 QTLdetectionforabioticstresstoleranceincommonbean(PhaseolusvulgarisL.) financialsupportfromtheCGIARresearch Increasedunderstandingofthephysiologyofabioticstresstolerance,combinedwiththe programonGrainLegumes(http://grainlegumes. availabilityofsuperiorgermplasmandmoleculartools,willaidbreedingeffortsforfurther cgiar.org/),assumedbyUSAID(https://www. improvementoftheseplanttraits. usaid.gov/).Thefundershadnoroleinstudy design,datacollectionandanalysis,decisionto publish,orpreparationofthemanuscript. Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. Introduction Commonbean(PhaseolusvulgarisL.)isthemostimportantfoodlegumefordirecthuman consumptioninthetropicsofLatinAmericaandsouthernandeasternAfrica[1]withatotal areaharvestedof30.6millionha[2].Itisanimportantsourceofprotein,carbohydratesand microminerals,particularlyforsmallholderfarmers[2].Itisanidealcropforthesmallholder farmingsystemsduetoitssymbioticnitrogenfixingabilityandrelativelyshortgrowthcycleof aboutthreemonths. Beanproductionisaffectedbyseveralconstraints,mainlyabioticstressesanddiseases. Hence,nationalaveragesofbushbeanyieldsthroughoutthetropicstypicallyrangefrom500 to700kgha-1,significantlybelowtheyieldpotential[3].Theprincipalabioticstressesthat limitcommonbeangrainyieldaredroughtandlowsoilfertilitysuchaslowphosphorus(P) availabilityandaluminum(Al)toxicityinsoil.Theseproblemstendtooccurincombination [4]. Droughtisestimatedtoaffect60%ofbeanproductioninthetropics,especiallyinregions suchasCentralAmericaandSouthernAfrica[5,6]andapproximately67%ofgloballyculti- vatedlandsareaffectedbyPdeficits[5,7].Ithasbeenestimatedthat50%ofbeanproduction areaworldwidesuffersmoderatetoseverePlimitation[8].LowsoilPavailabilityisexacer- batedinstronglyacidicoralkalinesoils,mainlyduetoformationofphosphatecomplexeswith AlandFeinacidicsoilsandCacomplexesinalkalinesoils[4].SoilaciditywithpH(cid:20)5.5affect morethan50%oftheword’spotentiallyarableland[9],andupto60%oftheacidsoilsinthe worldoccurindevelopingcountriesinSouthAmerica,CentralAfricaandSoutheastAsia[10]. Conventionalbreedingandtheselectionofsuperiorgenotypesfromsegregatingpopula- tionshasbeenthetraditionalandpredominantstrategyinbreedingprogramstoimprove toleranceofcommonbeanfordifferentabioticstressfactors.Pronouncedeffortswereunder- takentoimprovedroughtresistance(avoidanceandtolerance).Consideringthecomplexityof thistrait,indirectselectiontraitshavebeenevaluated.Phenotypicdifferencesindroughtresis- tancewerefoundtobeassociatedwithbiomassproductionatmid-podfilling[11],vigorous rootsystem[12,13],effectiveuseofwater[14],efficientdrymatterredistributiontograin[14– 16],phenologicalplasticity[17]andearliness[18,19].Earlymaturitywasshowntocorrelate withyieldunderstressfollowingthestrategyofdroughtavoidanceinseveralstudies(e.g. [13]),however,earlymaturityalsohasdisadvantagesincludinglimitedyieldpotential.Each dayofreductioningrowthcyclecouldresultinalossof74kgha-1[20].Thismayvarydepend- ingongenotypesandconditionsthough,aspositiveaswellasnegativecorrelationsofyield andmaturityhavebeenreported.Thephenotypicexpressionofthecharacteristicsasdaysto flowering(DF),daystophysiologicalmaturity(DPM)andpodharvestindex(PHI)couldbe moreinfluencedbythegeneticconstitutionthanbyenvironmentalstress[16]. AnumberofstudiesaimedatidentifyingbeansadaptedtolowPandacidsoils[5].Several physiologicalresponsestolowPavailabilityhavebeenreported,suchasmodificationofroot architecture,associationwithmycorrhizalfungiintherootsystem,andhigheruseefficiency ofabsorbedPtoproducebiomassandgrainyield[12,21–23]. PLOSONE|https://doi.org/10.1371/journal.pone.0202342 August29,2018 2/26 QTLdetectionforabioticstresstoleranceincommonbean(PhaseolusvulgarisL.) Severalyearsoffieldevaluationfordroughtresistanceandacidsoiltoleranceidentifiedthe landraceG21212tobeadaptedtothesestresses.IncontrastthebreedinglineBAT881issensi- tivetobothstresses[24–26].BothlinesbelongtoraceMesoamerica.Theauthorsconcluded thatproductivityunderlowPisheritablebutisbasedonmultiplemechanisms,hence,there maybeopportunitiestorecombinegenesandmechanismsandobtainhigherlevelsofstress tolerance. Inrecentyearsnewgenotypingtechnologieshavebeendeveloped,utilizingseveralthou- sandsofSingleNucleotidePolymorphisms(SNPs)thathavebecomeavailablethroughnext generationsequencing(NGS).SNPbasedmarkershavebecomethepreferredchoicefor geneticstudies,duetotheirabundanceanduniformdistributionthroughoutgenomes[27]. Theyhavebeenappliedtostudydiversity,genomemappingandQTLsdetectionforbioticand abioticstressesincommonbean[28–30].However,adoptionintobreedingprocesseshasbeen morelimitedtobioticstressresistance.KompetitiveAlleleSpecificPCR(KASP)genotyping technologyoffershighprecisionandrobustnessinassaysatlowcost[31].Approximately ~1500KASPmarkershavebeenestablishedforthecommonbeancommunitybytheGenera- tionChallengeProgram,tosupportgeneticstudiesandbreedingprograms. Themainobjectivesofthecurrentstudyweretoincreasetheunderstandingofadaptation ofcommonbeantodifferentstressenvironments,andtoperformmultilocationalevaluations ofyieldstabilityandstresstolerance.TheMesoamericanRILpopulationBAT881xG21212 (BxG)wasevaluatedforyieldandyieldcomponents,plantvigor,drymatterredistribution andphysiologicaltraitsunderdifferentconditionsofabioticstress(droughtconditions,low soilfertilityandmedium-highaluminumlevels).Theobjectiveofthisstudywastoidentify QTLsassociatedwithagronomictraitsandtoprovidemarkersforuseinmarkerassistedselec- tion(MAS)employingasaturatedgeneticBxGmap. Materialsandmethods Plantmaterials Atotalof100commonbean(P.vulgaris)genotypeswereusedinthisstudy.Theseincluded95 recombinantinbredlines(RILs)[32],thetwoparents(BAT881andG21212)usedascontrols andthreeotherlinesusedinthebeanbreedingprogramoftheInternationalCenterforTropi- calAgriculture(CIAT)asadditionalcontrolsineachtrial.Darie´n,Popaya´n1999andCIAT- PalmiratrialsusedG3513,G4017(toleranttolowfertility)andDOR364(sensitivetolowfer- tility)ascontrols;QuilichaotrialsusedDOR364,BAT477andVAX1(toleranttoaluminum andcommonbacterialblight).RILsweredevelopedbysingleseeddescent(SSD)fromtheF2 totheF5generation,followedbyseedadvancetotheF7generation.BAT881isanadvanced breedinglineofCIAT,withindeterminatebushgrowthhabit(IIa)andsmalllightbrownseed thatisresistanttobeancommonmosaicvirus(BCMV)andintermediatelyresistanttothe leafhopper(Empoascakraemeri)andangularleafspot[32].G21212isasmallblackseeded Colombianlandrace,growthhabitIIIb,toleranttolowsoilfertility,droughtandwithexcellent yield,butissusceptibletoBCMV[5,24,32,33].Bothgenotypesshowedintermediatelevelsof resistancetothemelonthrips[32]andbelongtothesameraceMesoamericaoftheMesoamer- icangenepool. Descriptionofexperimentallocations PhenotypicdatawereobtainedinfourdifferentlocationsinColombiaunderfieldconditions with10x10balancedlatticedesignwiththreereplicates,exceptthreetrialsatQuilichao (Q02a_MAl-LP,Q03a_HAL_MP,Q03b_HAL_MP)thathadtworeplicates.Atrialreferstoan evaluationofall100genotypesinaspecificlocation,season,andmanagement,areplicate PLOSONE|https://doi.org/10.1371/journal.pone.0202342 August29,2018 3/26 QTLdetectionforabioticstresstoleranceincommonbean(PhaseolusvulgarisL.) represents100experimentalplotsharboringallgenotypesandablockreferstoasubsectionof 10plotswithinareplicate. Descriptionoflocations:Darie´n(Dar,Inceptisol,3˚55’Nlatitude,76˚28’Wlongitude, 1457masl,lowPstress),Popaya´n(Pop,Inceptisol,2˚25’Nlatitude,76˚40’Wlongitude,1730 masl,lowPstress),Palmira(Pal,Mollisol,3˚30’Nlatitude,76˚21’Wlongitude,965masl, droughtstress)andSantanderdeQuilichao(Qui,Oxisol,3˚06’Nlatitude,76˚31’Wlongitude, 990masl,highAlstress).SpecificsoilconditionsareshowninS1Table. TwotrialswereestablishedinDarie´n:1997(September-December)withhighPsupply(20 kgha-1supplied,Dar97_HP)andin1998(September-December)withlowandhighPsupply (9and90kgha-1,Dar98_LPandDar98_HPrespectively).Experimentalunits(4rowsof4m lengthwithrow-to-rowdistanceof0.6m)weresownmanuallywith10plantspermrow length.TwotrialsweresowninPopaya´n:1999(April-September)withlowandhighP(0and 40kgha-1,Pop99_LPandPop99_HP,)and2005(JunetoAugust)withhighPsupply(39kg ha-1,Pop05_HP).Experimentalunits(4rowsof4.9mlengthwithrow-to-rowdistanceof0.6 m)weretractorsownwith14seedsperm.TwotrialswereestablishedinPalmira:2000and 2002inthesamesemester(JunetoSeptember),withtwolevelsofwatersupply(droughtand irrigated,Pal00_D,Pal00_I,Pal02_D,andPal02_I).Bothenvironmentswereirrigatedto ensuregoodplantestablishmentatearlygrowthasneededuntilearlypodfilling.Thereafter, irrigationwasdiscontinuedinthedroughttreatmentwhileirrigatedornon-stress(NS)plots continuedtoreceivesupplementalirrigationof20mmofwatertwiceaweekforatotalof additional188and211mmofwaterin2000and2002,respectively(S1Fig).Experimental units(4rowsof5mlengthwithrow-to-rowdistanceof0.6m)weretractorsownwith14 seedspermrowlength.Finally,fourtrialsweresowninSantanderdeQuilichao:2002(April toJune)inmoderateAlsaturation(40and64%intop0–10and10–20cm,respectively),low availablePcontent(3.3and1.9μgg-1)andhighorganicmattercontent(10.7and9.1%),sup- plementingwithP15kgha-1(Qui02a_MAl_LP).Asecondtrialin2002(OctobertoJanuary 2004),inmoderateAlsaturation(40and45%),moderateavailablePcontent(17.1and6.9μg g-1)andmoderateorganicmattercontent(5.6and5.2%)soilwithlowPsupply(10kgha-1, Qui02b_MAl_MP).In2003(MarchtoJune),withhighAlsaturations(61and62%),moderate availablePcontent(23.5and13.1μgg-1)andmoderateorganicmattercontent(5.9and5.4%) withlowPsupply(10kgha-1,Qui03_HAl_MP).Lastly,in2003(OctobertoJanuary2004) twotrialsweresownwithhighAl(61–61%and64–67%),highandmoderateavailablesoilP content(20.3–17.5μgg-1and13.2–5.5μgg-1),moderateorganicmattercontent(5.6–5.4% and6.1–5.4%),withlowPsupply(10kgha-1,Qui03_HAl_HPandQui03_HAl_MP,respec- tively).Experimentalunits(2rowsof3.72mlengthinQui02a_MAl_LP,4rowsof4.9min Qui02b_MAl_MPand3rowsof4.9mlengthintheotherQuilichaotrials)weretractorsown with14seedspermrowlengthandrowsseparatedwith0.6m. InthesupplementalmaterialS1Figtheconditionsofprecipitationandevaporation,mini- mumandmaximumtemperature,andtotalrainfallwhereavailablearedetailed.Inallloca- tionsrecommendedagronomicprocedureswerefollowed. Phenotypictraits Fivegroupsofplanttraitswereevaluatedinthisstudy:yieldcomponents,plantvigor,drymat- terredistribution,phenologicaltraits,andmineralnutrients.Notallvariablesweremeasured ineverytrial. Yieldcomponents:Yield(Yd,kgha-1)and100seedweight(100SdW,g100seeds-1).Atthe timeofharvest,0.3m2perplotwereharvestedtomeasureseednumberperarea(SNA,seeds m-2),podnumberperarea(PNA,podsm-2).Plantvigor:Canopybiomass(CB,kgha-1),leaf PLOSONE|https://doi.org/10.1371/journal.pone.0202342 August29,2018 4/26 QTLdetectionforabioticstresstoleranceincommonbean(PhaseolusvulgarisL.) areaindex(LAI,m2m-2),andleafbiomass(LB),podbiomass(PBMP)andstembiomass (SBMP,kgha-1)wereevaluatedatmid-podfilling.Plantsfrom0.3m2perplotwereharvested, leaveswereseparatedfromplantstomeasureleafarea(LI3000;LI-CORmInc.,Lincoln,NE). Separatedplantpartswereoven-driedat60˚Cfortwodaysuntilestablishingconstantweight, todeterminedryweight.Drymatterredistribution:Indicessuchasharvestindex(HI),pod partitioningindex(PPI),podharvestindex(PHI)werecalculated.Seedandshoottotalnon- structuralcarbohydratescontent(TNCmgg-1)weremeasuredtoexploregenotypicdiffer- encesindrymatterredistributionandgrainfilling[14,16,18,33,34].Thesedrymatter redistributiontraitsweredeterminedasHI(%):(seedbiomassasdryweightatharvest)/(total canopybiomassasdryweightatmid-podfilling)x100;PHI(%):(seedbiomassasdryweight atharvest)/(podbiomassasdryweightatharvest)x100;PPI(%):(podbiomassasdryweight atharvest)/(totalcanopybiomassasdryweightatmidpodfilling)x100;seedandshootTNC weredeterminedbycomparisonwithglucosestandardsaccordingtothemethoddescribedby [35].Becauseofleaffallincommonbeanduringseedfilling,dryweightoftotalcanopybio- masswasdeterminedatmid-podfilling[18].Useofdryweightofcanopybiomassandseed biomassatharvesttimeoverestimatesHIandPPIvaluesincommonbean.Phenological traits:Daystoflowering(DF,days);daystoharvest(DH,days).DFisdefinedasthenumber ofdaysafterplantinguntil50%oftheplantshaveatleastoneopenflowerandDHisthenum- berofdaysafterplantinguntilharvest.Mineralnutrients:Oneplantperplotwasharvestedat midpodfilling,washedwithdeionizedwater,oven-driedat60˚Cfortwodaysandgroundin a1mmsieve.Forseedevaluationsseedsfrom0.3m2plotareawereoven-driedat60˚Cfor twodaystobegroundina1mmsieve.Nutrient(N,P)compositionofplantpartswasdeter- minedasdescribedby[36].Shootnutrientuptakewascalculatedastheproductofshootdry matteryieldandnutrientconcentration.Nutrientuseefficiency(NUE_Sh,PUE_Sh)were estimatedasgramsofshootbiomassproducedpergramofshootnutrientuptake[37]and nutrientuseefficiencyforseedyield(NUE_Sd,PUE_Sd)wereestimatedasgramsofseedbio- massproducedatharvestpergramofshootnutrientuptakeatmidpodfilling.Additional informationondescriptionofphenotypictraitscanbefoundin"TraitDictionariesfor FieldbookDevelopment"athttp://mbp.generationcp.organdhttp://www.cropontology- curationtool.org/. Therawdataisavailableviadataversehttps://doi.org/10.7910/DVN/ODYAPF. Statisticalanalysis Varianceandcovarianceanalyseswerecarriedout,andtheresultsofthecovariancearepre- sentedonlyforthosetraitsthatshowedsignificantco-variationbetweengenotypesandtreat- ments.Pearson’scorrelationsbetweenalltraitsweredeterminedforalltrialsusingdataof individualreplications.Datashowninthisworkareadjustedmeansforeachgenotypeand theenvironment,thatwereobtainedusingSAS(v9.3)PROCMIXEDandPROCCORR [38],consideringtheeffectsofreplicationandblockswithinreplicationsasrandomand genotypesasfixed.Alsoleastsignificantdifference(LSD)wascalculatedwiththesamesoft- waretocomparetraitmeans.Variabilityandfrequencydistributionswererepresentedasvio- linplotsforeachenvironmentevaluated,generatedbythestatisticssoftwareR[39]withthe packageggplot2[40].Toestimatetheoveralladjustedmeansandadjustedmeansforeachof thefourlocations,BestLinearUnbiasedPredictions(BLUP)wereused,accordingto Resende[41]forthefourmajortraits(yield,100SdW,DF,DH).Weusedthepackagelme4 [42]foranalysisinthestatisticalsoftwareR.Thefollowingmixedlinearmodelwasdefined: Y=B0+B1trl+B2rep+B3blk+B4+errwhereYisthevectorofobservedvalues,B0is PLOSONE|https://doi.org/10.1371/journal.pone.0202342 August29,2018 5/26 QTLdetectionforabioticstresstoleranceincommonbean(PhaseolusvulgarisL.) intersect,B1istheeffectofeachtrial,B2theeffectofeachrepetition,B3theeffectofeach blockwithintrialsandreplicates,B4theeffectofeachgenotypeorlineanderrtheresidual error.Treatmentsandreplicateswereconsideredfixedeffectswhileblocksandgenotypes wereconsideredrandom.ThenewBLUPvariableswerenamedaftertheirrespectivetraits (yield,100SdW,DF,DH)acrosseachlocation,e.g.Yd_D,Yd_P,Yd_CandYd_Q,andfor overalladjustedmeansYd_all.Wealsocalculatedthedifferentialphenotypicresponseunder stressforyield,expressedaspercentyieldlossunderirrigationvsdrought(%YdL_D)and highvslowphosphorus(%YdL_LP).Theywerecalculated:%YdL_LP=((BLUP_higher P–BLUP_lowerP)/BLUPhigherP)(cid:3)100(combiningthetrialsDar98,Pop99,Qui03b); and%YdL_D=((BLUPirrigated–BLUP_drought)/BLUPirrigated)(cid:3)100(Pal00andPal02 trials).FortheseBLUPsonlydatasetswereusedwherestressvsnon-stressconditionswere evaluatedinthesameseason.Thesameformulawasappliedforthecalculationofpercent lossin100SdW,DFandDH. DNA,markersandQTLanalysis DNAwasextractedfromRILsandparentsaccordingtothemethoddescribedbefore[43]. DNAqualitywasevaluatedon0.8%agarosegelsfollowedbyquantificationonaHoeferDyNA fluorometer(DNAQuant™200).ThegeneticmapoftheBxGpopulationwasconstructed from339markers,fromwhich115markerscorrespondtopreviousanalyses[32]andwe added53AFLP,2RAPD,42SSRs[44–48].PCRamplificationconditionsweredescribed before[44,49,50]andPCRswereconductedin96-wellplatesusingaPTC-100thermalcycler (MJResearch,Watertown,USA).Wealsoadded127SNPsmarkersgenotypedatLGCGeno- mics(www.lgcgenomics.com,Hoddesdon,UK)withKASPgenotypingtechnology.These markershadbeenestablishedbytheGenerationChallengeProgram(https://www. generationcp.org/),basedontheBARKBeanchip[30,51]. ThegeneticmapwasconstructedusingMapDistov.1.7.5(http://mapdisto.free.fr/),using Kosambimappingfunction,withaminimumLODscoreof3andmaximumrecombination fractionof0.35;SARFandseriationascriteriafororderingandripple.Allgeneticmapping wasconfirmedwiththecommandfor‘‘bestorder”inMapDisto.Linkagegroupswere namedbasedonthechromosomeinformationofPhaseolusvulgarisgenomev2.1https:// phytozome.jgi.doe.gov/pz/portal.html(consultedJuly2018).QTLanalysiswasperformed throughQTLIciMappingsoftwareV4.0basedontheinclusivecompositeintervalmapping ofadditive(ICIM-Add)[52].ThemappingparametersofeachstepforICIM-ADDwereset at1.0cM.LODthresholdvalueof2.96wasappliedforalltraits,determinedthroughcom- pleting1000permutationswiththeTypeIerrorlevelsetatα=0.05foreachmapping method. Results Phenotypicdatafromfourlocationswithabioticstresstreatments TheBAT881xG21212RILpopulationwasevaluatedatfourlocations,totaling15trialswith independentlocation/treatmentcombinations.Twotrialsweregrownunderdroughtstress, fourinlowPstress,andanotherthreeinhighAlstressenvironments.Atotalof31traitswere evaluated,onlyyieldandDHwereevaluatedinall15trials(Fig1andTable1),resultingin225 datasets,includingtheaveragesforeachlocalityforthemajortraits(Yd,100SdW,DH,DF) andtheiroverallaverages.RILspresentedcontinuouspopulationdistributionsoftraitsby treatment(Fig1andS2Fig).TransgressivesegregationwasalsoevidentinBxGlineswith lowerorhighervaluescomparedtoparents. PLOSONE|https://doi.org/10.1371/journal.pone.0202342 August29,2018 6/26 QTLdetectionforabioticstresstoleranceincommonbean(PhaseolusvulgarisL.) Fig1.PhenotypicdataoftheBAT881xG21212population,collectedin15trialsoverfourlocationsforthemostfrequentlyevaluatedtraits.On thexaxisthetrialsappearintheirrespectiveyearandtreatments.Localitiesrepresentedincolors;blueforDarie´n,yellowforPopaya´n,greenfor PalmiraandorangeforQuilichao.TreatmentsHP,MPandLP:high,moderateandlowphosphorus,I:Irrigation,D:drought,HAlandMAl:Highand moderatealuminum.Traitvaluesofcontrolsaremarkedwithindicatedsymbols.G3513andG4017wereonlyusedatthelocalitiesofDarie´n,Popaya´n, Palmira,VAX1andBAT477inQuilichao.LSDisnotedbeloweachplot. https://doi.org/10.1371/journal.pone.0202342.g001 DroughtandlowPstress Droughtstressandnon-stresstreatmentswerecomparedintwoseasonsatPalmira(Pal)loca- tion.Droughtreducedyieldby13%and31%,respectively(Fig1andTable1).Lowestprecipi- tationamongdroughttrialsduringpodfillingstagewasrecordedin2002(88mmvs147mm, S1Fig),leadingtostrongeryieldreductionandlowerseedweight(Fig1).Similarly,yieldcom- ponentsPNoandSdNowerediminishedin2002,by40%byand41%,respectively,whereas seedsizewasnotaffected(S2Fig).Biomasstraitsweresignificantlyreducedbydroughtinthe Pal2002trials(CB=42%,LAI=26%LB=28%,SBMP=38%,PBMP=54%).Incontrast,in Pal2000wherethedroughtwaslessintenseandmorerainfallcoincidedwiththepodfilling phasenomajorreductionsinbiomasswereobserved.Drymatterredistributiontraitvalues wereelevatedunderdrought,suggestingbetterallocationofdrymatterresourcestoseed understress(Table1,S2Fig).ThelackofthisdatainthePalmira2000trialdidnotallowusto makeacomparisonbetweenthesetraitsbetweenthetwoyears.InmosttrialsshoottraitsLAI andLBshowedpositiveyieldcorrelations,however,indroughtconditionsnegativeyield PLOSONE|https://doi.org/10.1371/journal.pone.0202342 August29,2018 7/26 QTLdetectionforabioticstresstoleranceincommonbean(PhaseolusvulgarisL.) Table1. PhenotypicevaluationsoftheBAT881xG21212populationin15differenttrialsatfourlocationsinColombia. Locations Darien Popayan Palmira Quilichao Year/Environment 97 98 98LP 99HP 99 05HP 00D 00I 02D 02I 02MAl 02MAl 03aHAl 03bHAl 03bHAl HP HP LP LP MP MP MP HP Yieldcomponents Yd,Yield 3077 3737 1069 465 392 2098 1372 1579 671 975 1045 561 527 552 902 100SdW,Seedweight 17.2 14.6 23.3 19.7 19.1 17.9 17.9 28.9 24.4 23.9 20.9 23.2 PNo,Podnumber 274 174 291 149 117 101 146 SdNo,Seednumber 1198 663 1115 570 474 413 654 Plantvigor CB,Canopybiomass 2792 3656 3305 1912 3305 2188 1561 1105 813 1360 LAI,Leafareaindex 1.809 1.740 2.350 1.955 1.273 0.936 0.950 1.477 LB,Leafbiomass 645 828 689 727 1015 687 448 329 320 470 SBMP,Stembiomass 715 897 673 518 840 634 248 282 267 450 PBMP,Podbiomass 1433 1932 1942 668 1449 866 1313 493 226 440 Drymatterredistribution HI,Harvestindex 91.3 56.8 49.5 93.6 92.3 81.9 90.4 PHI,Podharvestindex 76.3 75.7 73.8 77.2 77.9 78.6 79.9 PPI,Podpartitioningindex 119.2 75.0 66.5 120.7 118.2 104.1 113.0 TNC_Sh,Totalnon-structural 110 147 342 138 203 103 127 carbohydratesinshoot TNC_Sd,TNCinseed 276 266 393 376 383 367 Phenologicaltraits DF,Daystoflowering 40.6 41.0 43.7 45.6 46.8 47.9 38.9 37.5 40.5 39.5 38.9 DH,Daystoharvest 77.9 81.6 82.4 101.3 96.7 104.2 77.6 85.0 80.1 81.4 84.8 78.0 81.5 76.5 76.3 Mineralnutrients ShN,Shootnitrogen 2.78 2.66 2.45 3.57 2.92 3.54 3.27 SdN,Seednitrogen 4.04 3.60 3.68 3.64 3.47 3.31 NUE_Sh,Nuseefficiencyinshoot 36.8 38.4 42.8 28.5 35.0 28.5 31.0 NUE_Sd,NUEinseed 11.7 10.2 18.3 15.6 16.9 17.8 18.4 ShP,ShootP 0.304 0.345 0.231 0.281 0.298 0.282 0.314 SdP,SeedP 0.416 0.590 0.487 0.645 0.310 0.389 0.393 0.431 PUE_Sh,Puseefficiencyinshoot 338 296 443 361 344 361 324 PUE_Sd,Puseefficiencyinseed 105 78 190 196 167 228 193 Differentialstressresponses %YdL_D,Yieldlossunderdrought 19.74 %YdL_LP,YieldlossunderlowP 50.87 %100SdWL_D,Seedweightreductionunderdrought 6.67 %100SdWL_LP,SeedweightreductionunderlowP 8.44 %DHL_D,Daystoharvestreductionunderdrought 5.29 %DHL_LP,DaystoharvestreductionunderlowP -0.21 %DFL_LP,DaystofloweringreductionunderlowP -3.97 Phenotypicmeansareshown,moredetailsinS2Fig.HP,MP,LPrepresenthigh,moderateorlowPconditions.D:drought,I:irrigated.MAlandHAl:moderateand highAl. https://doi.org/10.1371/journal.pone.0202342.t001 correlationswereobserved(S2Table).SdNwashigherunderdroughtconditions,whereas SdPwasreduced. EffectsoflowPstresswereevaluatedcomparingstressandnon-stresstrialsatthreeloca- tions.YieldreductionsweremoresevereinDarie´n(Dar)wherelowPreducedyieldsby71% PLOSONE|https://doi.org/10.1371/journal.pone.0202342 August29,2018 8/26 QTLdetectionforabioticstresstoleranceincommonbean(PhaseolusvulgarisL.) (Fig1,S2Fig,Table1).InPopaya´n(Pop)yieldwasloweredby16%,inaseasonprobably affectedbyexcessiverainfall(S1Fig).InPop99_HPexclusivelypositiveyieldcorrelationswith DFandDHwerefound,incontrast,inPop99_LPallcorrelationswerenegative(S2Table). Thiscondition-effectwasnotobservedinDarorQuilichao(Qui).IntrialsatQuiyieldsunder moderatePlevels(MP)werereducedby39%comparedtohighP(HP)conditions.Effectsof reducedPonyieldcomponents,biomassanddrymatterredistributiontraitswereonlyevalu- atedinQui.AllwerefoundtobediminishedinmoderatePconditions,includingalldrymat- terredistributiontraitswhichwasunexpected.Eventhoughshootbiomassproductionwas reduced,lowervaluesofHI,PHIandPPIindicatethatseedformationandfillingwereeven morecompromised.SdPwasreducedby9%underlowPconditions.Qui2002trialsunder moderateAlstressdidnotshowthesametendenciesasthetrialinMPconditionsout-yielded theHPtreatment,however,theseweresownindifferentseasons,whereclimaticdifferences likelyhavingalargereffectontraitsthansoilPlevels.Inaddition,goodperformanceof Qui02_MAl_LPtrialmaybeduetohigherorganicmattercontentinthesoil(S1Table). Thedifferentialphenotypicexpressionunderstresswasevaluatedforthefourmajortraits (Fig2).YieldwasreducedmoreunderLPthanunderdroughtacrosstheseexperiments.Most significantcorrelationsbetweenyieldlossunderstress(%YdL_Dand%YdL_LP)andyield wereasexpectednegativecorrelationsintherespectivestresstrials(droughtorLP,S2Table). Furthermore,severalpositivesignificantyieldcorrelationswerefound,solineswithhigh Fig2.FrequencydistributionsofdifferentialphenotypicresponsesunderdroughtandlowPconditions,expressedas%lossunderstressforfour majortraits.BLUPswereusedtojoinallavailablestressandnon-stressdatasetswherestressandnon-stressconditionshadbeenevaluatedinthesame season.%lossunderstressrepresentedincolors;bluefordrought(D)andyellowforlowP(LP). https://doi.org/10.1371/journal.pone.0202342.g002 PLOSONE|https://doi.org/10.1371/journal.pone.0202342 August29,2018 9/26 QTLdetectionforabioticstresstoleranceincommonbean(PhaseolusvulgarisL.) yieldsaremorelikelytoseeyieldsreducedunderstress.Negativecorrelationswereobserved withpodandseednumberaswellaspodbiomass,suggestingthattheseyieldcomponenttraits aidstresstolerance.Positivecorrelationswithmaturitytraitsindicatethatlatematuringlines loosemoreyieldunderstress.Maturitytraitssawmorereductionsindroughttrials,underlow PDFvalueswereevenextended.Accordingly,manymoresignificanttraitcorrelationswere foundfor%DHL_Dcomparedto%DHL_LP,generallycontrastingtheDHcorrelations. Qui2002andQui2003trialswereplantedonsoilsthatwereevaluatedtohavemoderate andhighAllevels,respectively.NosignificanteffectattributedtodifferencesinsoilAlonyield andothertraitscouldbedetectedacrossseasons. SuperiorRILlinesthatperformedwellunderstressandacrosstrialswereidentified. YieldsundermostseveredroughtandlowPstresstrialswerecomparedtoaverageyields acrossall15trials(Fig3Aand3B).Highcorrelationsindicatethatmoststresstolerantlines areamongthemostproductiveinalltrials,displayinghighgeneralyieldstability.Thismeans thatselectionofbestlinesunderstressconditionsarealsogenerallywellperformingunder optimalconditionsandviceversa.RILsR9,47,154,arethebestlinestocombinedrought andcross-locationyieldstability,andanothersevenlinesareexcellentforboth.ForlowPtol- erancethecorrelationwasalsopositive,butlessclearasthetop5%oflinesforeachcondition donotoverlap.Thebestlinesthatcombinecross-locationyieldstabilityandlowPtolerance areR30,45,80,andtheparentallineG21212,whichisexcellentinlowP.Takentogether, droughtandlowPstresstreatmentshadsignificanteffectsonproductivity,yieldcomponents andbiomass,however,variabilitybetweentrialsduetoclimaticandotherconditionswas alsolarge.RILs1,80,and154canbeusefulasparentstodevelopmultiplestressresistant genotypes. Amongtheparentallines,G21212parentshowedhigheryieldandearlinessthanBAT881 underLPstressinPopandQui,droughtandcombinationsofhighAlandmoderateP(Fig1). BAT881ontheotherhand,wassuperiorunderfavorableconditionsunderliningthecontrast- ingbehavioroftheparentallines.TheadditionalcontrolsG3513andG4017usedintheDar andPoplocalitiesweresimilarinyield,theirperformancebeinggenerallyintermediate betweenthetwoparentsunderlowP.G3513performspoorlyinPal.Theadditionalchecks DOR364,BAT477andVAX1selectedforcontrastingaluminumstressresponsearemostly inferiortoG21212. Effectoflocationsontraits Comparisonsofphenotypicdatasetsshowedstrongcorrelationsamongtrials.DHshowedsig- nificantpositivecorrelationsbetweennearlyalldatasets(Fig4A),demonstratingthatthedata setisusefulforcomparativeanalysisandvariableresponseishighlystable.Yieldcorrelations betweenlocationswereexpectedlylower,allsignificantcorrelationswereexpectedlypositive (Fig4A).BestcorrelationswerefoundbetweentrialsatDarandPop,whichareathigheralti- tudes(1457–1730masl,respectively)comparedtoloweraltitudesitesPalandQui(965–990 masl).FewersignificantyieldcorrelationswereobservedbetweenPalandQuilocations,prob- ablyduetotheircontrastingsoilfertilityconditions. Phenotypicdataformajortraitsvariedwidelyamongtrials(Fig1).Highestyieldswere observedinDarlocationundernon-stressenvironmentswithaverageyieldsof3.7t/ha (Table1).Popwasthemostvariable.LoweryieldswereobservedinPalandQui.Highaltitude locationPoprecordedmostdelayedfloweringandmaturitywithhighestDFandDHvalues. HighestseedsizeswereobservedatQuilocation,atraitnotevaluatedatDar. Siteregressionanalysisbasedonyielddata(Fig4B)resultedinPop05_HPbeingthemost distincttrial,Dar98_HPandDar97_HPappearclusteredtoeachother,differentfromallother PLOSONE|https://doi.org/10.1371/journal.pone.0202342 August29,2018 10/26

Description:
were reduced in drought trials in Palmira by 13 and 31%, respectively, and Marche, ITALY . Two trials were established in Palmira: 2000 and.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.