ebook img

QGIS in remote sensing set. Volume 2, QGIS and applications in agriculture and forest PDF

353 Pages·2018·43.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview QGIS in remote sensing set. Volume 2, QGIS and applications in agriculture and forest

QGIS and Applications in Agriculture and Forest QGIS in Remote Sensing Set coordinated by André Mariotti Volume 2 QGIS and Applications in Agriculture and Forest Edited by Nicolas Baghdadi Clément Mallet Mehrez Zribi First published 2018 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2018 The rights of Nicolas Baghdadi, Clément Mallet and Mehrez Zribi to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2017962204 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-188-8 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Chapter 1. Coupling Radar and Optical Data for Soil Moisture Retrieval over Agricultural Areas . . . . . . . . . . . . . . . . 1 Mohammad EL HAJJ, Nicolas BAGHDADI, Mehrez ZRIBI and Hassan BAZZI 1.1. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Study site and satellite data . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1. Radar images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2. Optical image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3. Land cover map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1. Inversion approach of radar signal for estimating soil moisture . . 5 1.3.2. Segmentation of crop and grasslands areas . . . . . . . . . . . . . . . 6 1.3.3. Soil moisture mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4. Implementation of the application via QGIS . . . . . . . . . . . . . . . . 10 1.4.1. Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.2. Radar images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.3. Optical image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4.4. Land cover map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4.5. Segmentation of crop’s areas and grasslands . . . . . . . . . . . . . . 26 1.4.6. Elimination of small spatial units . . . . . . . . . . . . . . . . . . . . 29 1.4.7. Mapping soil moisture . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.4.8. Soil moisture maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.5. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Chapter 2. Disaggregation of Thermal Images . . . . . . . . . . . . . . . 47 Mar BISQUERT and Juan Manuel SÁNCHEZ 2.1. Definition and context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 vi QGIS and Applications in Agriculture and Forest 2.2. Disaggregation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.1. Image pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.2. Disaggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3. Practical application of the disaggregation method . . . . . . . . . . . . 53 2.3.1. Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.3.2. Step 1: pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.3.3. Step 2: disaggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4. Results analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.5. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Chapter 3. Automatic Extraction of Agricultural Parcels from Remote Sensing Images and the RPG Database with QGIS/OTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Jean-Marc GILLIOT, Camille LE PRIOL, Emmanuelle VAUDOUR and Philippe MARTIN 3.1. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.2. Method of AP extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.2.1. Formatting the RPG data . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.2.2. Classification of SPOT satellite images . . . . . . . . . . . . . . . . . 81 3.2.3. Intersect overlay between extracted AP and FB with crop validation . 81 3.3. Practical application of the AP extraction . . . . . . . . . . . . . . . . . . 82 3.3.1. Software and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.3.2. Setting up the Python script . . . . . . . . . . . . . . . . . . . . . . . . 86 3.3.3. Step 1: formatting the RPG data . . . . . . . . . . . . . . . . . . . . . 89 3.3.4. Step 2: classification of SPOT satellite Images . . . . . . . . . . . . 97 3.3.5. Step 3: intersect overlay between extracted AP and FB and crop validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.4. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 3.5. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Chapter 4. Land Cover Mapping Using Sentinel-2 Images and the Semi-Automatic Classification Plugin: A Northern Burkina Faso Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Louise LEROUX, Luca CONGEDO, Beatriz BELLÓN, Raffaele GAETANO and Agnès BÉGUÉ 4.1. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.2. Workflow for land cover mapping . . . . . . . . . . . . . . . . . . . . . . 120 4.2.1. Introduction to SCP and S2 images . . . . . . . . . . . . . . . . . . . 120 4.2.2. Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.2.3. Land cover classification . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.2.4. Classification accuracy assessment and post-processing . . . . . . . 129 4.3. Implementation with QGIS and the plugin SCP . . . . . . . . . . . . . . 131 Contents vii 4.3.1. Software and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.3.2. Step 1: data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . 133 4.3.3. Step 2: land cover classification . . . . . . . . . . . . . . . . . . . . . 139 4.3.4. Step 3: assessment of the classification accuracy and post-processing . 144 4.4. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Chapter 5. Detection and Mapping of Clear-Cuts with Optical Satellite Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Kenji OSE 5.1. Definition and context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.2. Clear-cuts detection method . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.2.1. Step 1: change detection – geometric and radiometric pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.2.2. Steps 2 and 3: forest delimitation . . . . . . . . . . . . . . . . . . . . 160 5.2.3. Step 4: clear-cuts classification . . . . . . . . . . . . . . . . . . . . . . 160 5.2.4. Steps 5 and 6: export in vector mode . . . . . . . . . . . . . . . . . . 162 5.2.5. Step 7: statistical evaluation. . . . . . . . . . . . . . . . . . . . . . . . 164 5.2.6. Method limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.3. Practical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.3.1. Software and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.3.2. Step 1: creation of the changes image . . . . . . . . . . . . . . . . . . 168 5.3.3. Steps 2 and 3: creation, merging and integration of masks . . . . . 170 5.3.4. Step 4: clear-cuts detection . . . . . . . . . . . . . . . . . . . . . . . . 174 5.3.5. Step 5: vector conversion . . . . . . . . . . . . . . . . . . . . . . . . . 177 5.4. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Chapter 6. Vegetation Cartography from Sentinel-1 Radar Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Pierre-Louis FRISON and Cédric LARDEUX 6.1. Definition and context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.2. Classification of remote sensing images . . . . . . . . . . . . . . . . . . . 183 6.3. Sentinel-1 data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 6.3.1. Radiometric calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 186 6.3.2. Ortho-rectification of calibrated data . . . . . . . . . . . . . . . . . . 186 6.3.3. Clip over a common area . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.3.4. Filtering to reduce the speckle effect . . . . . . . . . . . . . . . . . . 187 6.3.5. Generation of color compositions based on different polarizations 188 6.4. Implementation of the processing within QGIS . . . . . . . . . . . . . . 189 6.4.1. Downloading data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 6.4.2. Calibration, ortho-rectification and stacking of Sentinel-1 data over a common area . . . . . . . . . . . . . . . . . . . . . . 198 6.4.3. Speckle filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 viii QGIS and Applications in Agriculture and Forest 6.4.4. Other tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.5. Data classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 6.6. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Chapter 7. Remote Sensing of Distinctive Vegetation in Guiana Amazonian Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 Nicolas KARASIAK and Pauline PERBET 7.1. Context and definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 7.1.1. Global context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 7.1.2. Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 7.1.3. Remote sensing images available . . . . . . . . . . . . . . . . . . . . 217 7.1.4. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 7.1.5. Method implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 219 7.2. Software installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 7.2.1. Dependencies installation available in OsGeo . . . . . . . . . . . . . 220 7.2.2. Installation of scikit-learn . . . . . . . . . . . . . . . . . . . . . . . . . 221 7.2.3. Dzetsaka installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 7.3. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 7.3.1. Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 7.3.2. Cloud mask creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 7.4. Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 7.4.1. Creating training plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 7.4.2. Classification with dzetsaka plugin . . . . . . . . . . . . . . . . . . . 230 7.4.3. Post-classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 7.5. Final processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 7.5.1. Synthesis of predicted images . . . . . . . . . . . . . . . . . . . . . . 240 7.5.2. Global synthesis and cleaning unwanted areas . . . . . . . . . . . . . 242 7.5.3. Statistical validation – limits . . . . . . . . . . . . . . . . . . . . . . . 244 7.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 7.7. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Chapter 8. Physiognomic Map of Natural Vegetation . . . . . . . . . . 247 Samuel ALLEAUME and Sylvio LAVENTURE 8.1. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 8.2. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 8.2.1. Segmentation of the VHSR mono-date image . . . . . . . . . . . . . 249 8.2.2. Calculation of temporal variability indices . . . . . . . . . . . . . . . 249 8.2.3. Extraction of natural vegetation using time series . . . . . . . . . . . 251 8.2.4. Vegetation densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 8.2.5. Maximum productivity index of herbaceous areas . . . . . . . . . . 255 8.3. Implementation of the application . . . . . . . . . . . . . . . . . . . . . . 256 8.3.1. Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 Contents ix 8.3.2. Software and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 8.3.3. Step 1: VHSR image processing . . . . . . . . . . . . . . . . . . . . . 259 8.3.4. Step 2: calculation of the variability indices on the time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 8.3.5. Step 3: extraction of the natural vegetations from the time series of Sentinel-2 image by thresholding method . . . . . . . . . . . 267 8.3.6. Step 4: classification of vegetation density by supervised classification SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 8.3.7. Step 5: extraction of the level of productivity of grasslands . . . . . 277 8.3.8. Step 6: final map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 8.4. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 Chapter 9. Object-Based Classification for Mountainous Vegetation Physiognomy Mapping . . . . . . . . . . . . . . . . . . . . . . . 283 Vincent THIERION and Marc LANG 9.1. Definition and context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 9.2. Method for detecting montane vegetation physiognomy . . . . . . . . . 284 9.2.1. Satellite image pre-processing . . . . . . . . . . . . . . . . . . . . . . 286 9.2.2. Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 9.2.3. Sampling, learning and segmented image classification . . . . . . . 291 9.2.4. Statistical validation of classification . . . . . . . . . . . . . . . . . . 295 9.2.5. Limits of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 9.3. Application in QGIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 9.3.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 9.3.2. Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 9.3.3. Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 9.4. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 List of Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Scientific Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 Introduction Agriculture and forestry are fields strongly involved in the use of spatial data, which are essential for monitoring and restoring the spatial and temporal variability of surface states. The latter are key parameters in the understanding and modeling of different plant and soil processes, and in the management of agricultural or forest resources. A very good knowledge of these environments is therefore fundamental both from an economic and ecological point of view. Remote sensing, thanks to the great diversity of spatial (from precision agriculture to global crop monitoring), spectral (active and passive sensors) and temporal (from rapid mapping to annual crop monitoring) resolutions, has become an inevitable support to address these issues. In this context, the use of Geographic Information System (GIS) tools has long been present in accompanying the exploitation of spatial imagery. The aim of this second volume is to present different applications in agriculture and forestry. The book, which is supported by scientists who are internationally renowned in their fields, will help update knowledge and describe research and development issues for years to come. It is intended for research teams in geomatics, second-cycle students (engineering schools, master’s degrees) and postgraduate studies (PhD students), and engineers involved in the monitoring and management of agricultural or forestry resources and more fundamentally in the extraction of the knowledge required for these needs. In addition to the texts of the proposed chapters, readers will have access to the data, computer tools as well as screenshots of all the windows, which illustrate all the steps necessary for the realization of each application. The first chapter of this volume concerns the estimation of the hydric state of the soil by synergy of radar/optical satellite data. Chapter 2 deals with the disaggregation of thermal data. The third chapter discusses the operational and

Description:
These four volumes present innovative thematic applications implemented using the open source software QGIS. These are applications that use remote sensing over continental surfaces. The volumes detail applications of remote sensing over continental surfaces, with a first one discussing applications
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.